Role of Acetone in the Formation of Highly Dispersed Cationic Polystyrene Nanoparticles

Open access

Abstract

A modified emulsion polymerisation synthesis route for preparing highly dispersed cationic polystyrene (PS) nanoparticles is reported. The combined use of 2,2′-azobis[2-(2-imidazolin- 2-yl)propane] di-hydrochloride (VA-044) as the initiator and acetone/water as the solvent medium afforded successful synthesis of cationic PS particles as small as 31 nm in diameter. A formation mechanism for the preparation of PS nanoparticles was proposed, whereby the occurrence of rapid acetone diffusion caused spontaneous rupture of emulsion droplets into smaller droplets. Additionally, acetone helped to reduce the surface tension and increase the solubility of styrene, thus inhibiting aggregation and coagulation among the particles. In contrast, VA-044 initiator could effectively regulate the stability of the PS nanoparticles including both the surface charge and size. Other reaction parameters i.e. VA-044 concentration and reaction time were examined to establish the optimum polymerisation conditions.

Abadi A.R.S., Darabi A., Jessop P.G. Cunningham M.F., 2015. Preparation of redispersible polymer latexes using cationic stabilizers based on 2-dimethylaminoethyl methacrylate hydrochloride 2,2′-azobis[2-(2-imidazolin-2 yl)propane]dihydrochloride. J. Polym., 60, 18. DOI:10.1016/j.polymer.2015.01.017.

Balgis R., Anilkumar G.M., Sago S., Ogi T., Okuyama K., 2012. Nanostructured design of electrocatalyst support materials for high-performance PEM fuel cell application. J. Power Sources, 203, 26-33. DOI: 10.1016/j.jpowsour.2011.11.064.

Balgis R., Ogi T., Wang W. N., Anilkumar G. M., Sago S., Okuyama K., 2014. Aerosol synthesis of selforganized nanostructured hollow and porous carbon particles using a dual polymer system. Langmuir, 30, 11257-11262. DOI: 10.1021/la502545d.

Beerbower A., 1971. Surface free energy: A new relationship to bulk energies. J. Colloid Interface Sci. 35, 126-132. DOI: 10.1016/0021-9797(71)90192-5.

Camli S.T., Buyukserin F., Balci O., Budak G.G., 2010. Size controlled synthesis of sub-100 nm monodisperse poly(methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization. J. Colloid Interface Sci., 344(2), 528-532, DOI: 10.1016/j.jcis.2010.01.041.

Chou C., Chiu W.Y., 2013. Novel Synthesis of Multi-Scaled, surfactant-free monodisperse latexes via alcoholic dispersion polymerization in a mixed ionic-nonionic initiation system. Macromolecules, 46, 3561-3569. DOI: 10.1021/ma400277s.

Chou I. C., Chen S. I., Chiu W. Y., 2014. Surfactant-free dispersion polymerization as an efficient synthesis route to a successful encapsulation of nanoparticles. RSC Adv., 4, 47436-47447. DOI: 10.1039/C4RA07475K.

Ernawati, L., Ogi T., Balgis R., Okuyama K., Stucki M., Hess S. C., Stark W.J., 2016. Hollow silica as an optically transparent and thermally insulating polymer additive. Langmuir, 32, 338-345. DOI: 10.1021/acs.langmuir.5b04063.

Ganachaud F., Katz J.L., 2005. Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. Chem. PhysChem, 6, 209-216. DOI: 10.1002/cphc.200400527.

Gradon L., Janeczko S., Abdullah M., Iskandar F., Okuyama K., 2004. Self-organization kinetics of mesoporous nanostructured particle. AIChE J., 50, 2583-2593. DOI:10.1002/aic.10257.

Hansen C.M., 1969. The universality of the solubility parameter. Ind. Eng. Chem. Prod. Res. Dev., 8, 2-11. DOI: 10.1021/i360029a002.

Hirschle P., Prei T., Auras F., Pick A., Völkner J., Valdepérez D., Witte G., Parak W. J., Rädler J. O., Wuttke S., 2016. Exploration of MOF nanoparticle sizes using various physical characterization methods is what you measure what you get. Cryst. Eng. Comm., 18, 4359-4368. DOI: 10.1039/c6ce00198j.

Horn D., Rieger J., 2001. Organic nanoparticles in the aqueous phase-theory, experiment, and use. Angew. Chem. Int. Ed., 40, 4330-4361. DOI: 10.1002/1521-3773(20011203)40:23.

Ishii H., Ishii M., Nagao D., Konno M., 2014. Advanced synthesis for monodisperse polymer nanoparticles in aqueous media with sub-millimolar surfactants. Polymer, 55, 2772-2779. DOI: 10.1016/j.polymer.2014.04.011.

Ito F., Ma G., Nagai M., Omi S., 2002. Study of particle growth by seeded emulsion polymerization accompanied by electrostatic coagulation. Colloids Surf. Physicochem. Eng. Asp. 201, 131-142. DOI: 10.1016/S0927-7757(01)01030-5.

Kim, G., Lim, S., Lee, B.H., Shim, S.E., Choe, S., 2010. Effect of homogeneity of methanol/water/monomer mixture on the mode of polymerization of MMA: Soap-free emulsion polymerization versus dispersion polymerization. Polymer, 51, 1197-1205. DOI:10.1016/j.polymer.2009.12.038.

Lee S.Y., Gradon L., Janeczko S., Iskandar F., Okuyama K., 2010. Formation of highly ordered nanostructures by drying micrometer colloidal droplets. ACS Nano, 4, 4717-4724. DOI: 10.1021/nn101297c15.

Legrand P., Lesieur S., Bochot A., Gref R., Raatjes W., Barratt G., 2007. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int. J. Pharm., 344, 33-43. DOI: 10.1016/j.ijpharm.2007.05.054.

Li Zh., Cheng Z., Han H.C. C., 2012. Mechanism of narrowly dispersed latex formation in a surfactant-free emulsion polymerization of styrene in acetone-water mixture, Macromolecules, 45, 3231-3239. DOI: 10.1021/ma202535j.

Li L., Zhai T., Zeng H., Fang X., Bando Y., Golberg D., 2011. Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. J Mater. Chem., 21, 40-56. DOI: 10.1039/C0JM02230F.

Liu B., Zhang M., Cheng H., Fu Z., Zhou T., Chi H., Zhang H., 2014. Large-scale and narrow dispersed latex formation in batch emulsion polymerization of styrene in methanol-water solution. Colloid Polym. Sci., 292, 519-525. DOI: 10.1007/s00396-013-3113-8.

Liu B., Sun S., Zhang M., Ren L., Zhang H., 2015. Facile synthesis of large scale and narrow particle size distribution polymer particles via control particle coagulation during one-step emulsion polymerization. Colloids Surf. Physicochem. Eng. Asp., 484, 81-88. DOI: 10.1016/j.colsurfa.2015.07.050.

Liu Q., Li Y., Duan Y., Zhou H., 2012. Research progress on the preparation and application of monodisperse cationic polymer latex particles. Polym. Int., 61, 1593-1602. DOI: 10.1002/pi.4347.

Liu Q., Tang Z., Zhou Z., Zhou H., Liao B., Shen S., Chen L., 2014. A novel route to prepare cationic polystyrene latex particles with monodispersity, J. Macromol. Sci. 51, 271-278. DOI:10.1080/10601325.2014.882683.

Maiti A., Mc Grother S., 2004. Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. J. Chem. Phys., 120, 1594. DOI: 10.1063/1.1630294.

Nandiyanto A.B.D., Iskandar F., Okuyama. K., 2008. Nanosized polymer particle-facilitated preparation of mesoporous silica particles using a spray method. Chem. Lett., 37, 1040-1041. DOI:10.1246/cl.2008.1040.

Nandiyanto A.B.D., Suhendi A., Ogi T., Iwaki T., Okuyama K., 2012. Synthesis of additive-free cationic polystyrene particles with controllable size for hollow template applications. Colloids Surf. Physicochem. Eng. Asp., 396, 96-105. DOI: 10.1063/1.1630294.

Nandiyanto A.B.D., Suhendi A., Ogi T., Umemoto R., Okuyama K., 2014. Size and charge controllable polystyrene spheres for templates in the preparation of porous silica particle with tunable internal hole configurations. Chem. Eng. J., 256, 421-430. DOI:10.1016/j.cej.2014.07.005.

Natu A.M., Wiggins M., Van De Mark M.R., 2015. Synthesis and characterization of cationic colloidal unimolecular polymer (CUP) particles. Colloid Polym. Sci., 293, 1191-1204. DOI: 10.1007/s00396-015-3508-9.

Ngai T., Wu C., 2005. Double roles of stabilization and destabilization of initiator potassium persulfate in surfactant-free emulsion polymerization of styrene under microwave irradiation, Langmuir, 21, 8520-8525. DOI: 10.1021/la0506630.

Ogi T., Nandiyanto, A. B. D., Okuyama, K., 2014. Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications. Adv. Powder. Technol. 25, 3-17. DOI: 10.1016/j.apt.2013.11.005.

Okubo M., Yamada A., Shibao S., Nakamae K., Matsumoto T., 1981. Studies on suspension and emulsion. XLVI. Emulsifier-free emulsion polymerization of styrene in acetone-water. J. Appl. Polym. Sci., 26, 1675-1679. DOI: 10.1002/app.1981.070260522.

Koenhen D. M., Smolders C. A., 1975. The determination of solubility parameters of solvents and polymers by means of correlations with other physical quantities. J. Appl. Polym. Sci., 19, 1163-1179. DOI: 10.1002/app.1975.070190423.

Rao J. P., Geckeler K. E., 2011. Preparation techniques and size-control parameters. Prog.Polym. Sci., 36, 887-913. DOI:10.1016/j.apt.2013.11.005.

Shibuya D., Nagao H., Ishii., Konno M., 2014. Advanced soap-free emulsion polymerization for highly pure, micron-sized, monodisperse polymer particles. Polymer, 55, 535-539. DOI:10.1016/j.polymer.2013.12.039.

Sood A., 2004. Particle size distribution control in emulsion polymerization. J. Appl. Polym. Sci., 92, 2884-2902. DOI: 10.1002/app.20231.

Tadros T. F., 2013. Emulsion formation and stability. John Wiley & Sons.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 177 177 87
PDF Downloads 64 64 38