Towards a Numerical Model of Bacterial Filtration in Fibrous Filters

Open access


A model of bacterial filtration on fibrous filter media is developed. The single fibre efficiency as well as the efficiency of the whole filter - at the onset of the process and the evolution of those quantities - are analysed. The differences between the numerical modelling of colloidal particles and bacteria are stressed in detail. The main differences are the active motion ability of bacteria and biofilm formation. The parameters of the model were identified based on the literature data.

Adamczyk Z., Weroński P., 1999. Application of the DLVO theory for particle deposition problems. Adv. Colloid Int. Sci., 83, 137-226. DOI:10.1016/S0001-8686(99)00009-3.

Arabagi V., Behkam B., Cheung E., Sitti M., 2011. Modeling of stochastic motion of bacteria propelled spherical microbeds. J. Appl. Phys., 109, 114702. DOI: 10.1063/1.3592970.

Baranyi J., Roberts T.A., 1994. A dynamic approach to predicting bacterial growth in food. Int. J.Food Microbiol., 23, 277-294. DOI: 10.1016/0168-1605(94)90157-0.

Baranyi J., Ross T., McMeekin T.A., Roberts T.A., 1996. Effects of parameterisation on the performance of empirical models used in predictive microbiology. Food Microbiol., 13, 83-91.

Chick H., 1908. An investigation of the laws of disinfection. Journal of Hygiene, 8, 92-158.

Darlymple O.K., Stefanakos E., Trotz M.A., Goswami D.Y., 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Appl. Catal., B: Environ., 98, 27-38. DOI: 10.1016/j.apcatb.2010.05.001.

Derjaguin B., Landau L., 1941. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico Chemica URSS, 14, 633-662.

Gupta V.K., 2012. Effect of viscous drag on multiple receptor-ligand bonds rupture force. Colloids Surf., B: Biointerfaces, 100, 229-239. DOI: 10.1016/j.colsurfb.2012.05.028.

Hom L.W., 1972. Kinetics of chlorine disinfection of an ecosystem. J. Sanit. Eng. Div., 98, 183-194.

Kasper G., Schollmeier S., Meyer J., Hoferer J., 2009. The collection efficiency of a particle-loaded single fiber. J. Aerosol Sci., 40, 993-1009. DOI: 10.1016/j.jaerosci.2009.09.005.

Lee K.W., Liu B.Y.H., 1982. Theoretical study of aerosol filtration by fibrous filter. Aerosol Sci. Technol. 1, 147-161.

Ong Y., Razatos A., Georgius G. Sharma M. M., 1999. Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir, 15, 2719-2725. DOI: 10.1021/la981104e.

Presser K.A., Ratkovsky D.A., Ross T., 1997. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl. Environ. Microbiol., 63, 2355-2360.

Ruggiero C., Mantelli M., Curtis A., Zhang S., Rolfe P., 1999. Computer modelling of the adsorption of proteins on solid surfaces under the influence of double layer and van der Waals energy. Med. Biol. Eng. Comp., 37, 119-124.

Sondi I., Salopek-Sondi B., 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Int. Sci., 275, 177-182. DOI: 10.1016/j.jcis.2004.02.012.

Stryer L., Berg J.M., Tymoczko J.L., 2002. Biochemistry. 5th Edition,W H Freeman Publishers, New York.

Verwey E. J. W., Overbeek J. Th. G., 1948. Theory of the stability of lyophobic colloids. Elsevier, Amsterdam.

Wei C., Lin W.Y., Zainal Z., Williams N.E., Zhu K., Kruzic A.P., Smith R.L., Rajeshwar K., 1994. Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system. Environ. Sci. Technol. 28, 934-938. DOI: 10.1021/es00054a027.

Xu X., Yang Q., Wang Y., Yu H., Chen X., Jing X., 2006. Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles. Eur. Polymer J., 42, 2081-2087. DOI: 10.1016/j.eurpolymj.2006.03.032.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 106 106 8
PDF Downloads 28 28 3