Methods of Thermal Calculations for a Condensing Waste-Heat Exchanger

Open access


The paper presents the algorithms for a flue gas/water waste-heat exchanger with and without condensation of water vapour contained in flue gas with experimental validation of theoretical results. The algorithms were used for calculations of the area of a heat exchanger using waste heat from a pulverised brown coal fired steam boiler operating in a power unit with a capacity of 900 MWe. In calculation of the condensing part, the calculation results obtained with two algorithms were compared (Colburn-Hobler and VDI algorithms). The VDI algorithm allowed to take into account the condensation of water vapour for flue gas temperatures above the temperature of the water dew point. Thanks to this, it was possible to calculate more accurately the required heat transfer area, which resulted in its reduction by 19 %. In addition, the influence of the mass transfer on the heat transfer area was taken into account, which contributed to a further reduction in the calculated size of the heat exchanger - in total by 28% as compared with the Colburn-Hobler algorithm. The presented VDI algorithm was used to design a 312 kW pilot-scale condensing heat exchanger installed in PGE Belchatow power plant. Obtained experimental results are in a good agreement with calculated values.


  • Ball D.A., White E.L., Lux J.J., Razgaitis R., Markle R.A., 1984. Condensing heat exchanger systems for residential/commercial furnaces and boilers. Phase III, DOE Contract Number AC02-76CH00016.

  • Colburn A.P., Hougen O.A., 1934. Design of cooler condensers for mixtures of vapors with noncondensing gases. Ind. Eng. Chem., 11, 1178-1182. DOI: 10.1021/ie50299a011.

  • Hobler T., 1986. Ruch ciepła i wymienniki. 6th edition, WNT, Warszawa.

  • Jeong K., Kessen M.J., Bilirgen H., Levy E.K., 2010. Analytical modeling of water condensation in condensing heat exchanger. Int. J. Heat Mass Transfer, 53, 2361-2368. DOI: 10.1016/j.ijheatmasstransfer.2010.02.004.

  • Jia L., Peng X.F., Yan Y., Sun J.D., Li X.P., 2001. Effects of water vapor condensation on the convection heat transfer of wet flue gas in vertical tube. Int. J. Heat Mass Transfer, 44, 4257-4265. DOI: 10.1007/s00231-006-0148-0.

  • Lee J., Kim T-J., Kim M.H., 2005. Experimental study on the heat and mass transfer of teflon-coated tubes for the latent heat recovery. Heat Transfer Eng., 26:2, 28-37, DOI: 10.1080/01457630590897079.

  • Levy E., Bilirgen H., Jeong K., Kessen M., Samuelson Ch., Whitcombe Ch., 2008. Recovery of water from boiler flue gas. DOE Award Number DE-FC26-06NT42727.

  • Liang Y., Che D., Kang Y., 2007. Effect of vapor condensation on forced convection heat transfer of moistened gas. Heat Mass Transfer, 43, 677-686. DOI: 10.1007/s00231-006-0148-0.

  • Osakabe M., 2000. Latent heat recovery from oxygen-combustion flue gas. Energy Conversion Engineering Conference and Exhibit. Las Vegas, USA, 24-28 July 2000, 804-812. DOI: 10.1109/IECEC.2000.870877.

  • Rączka P. Wójs K., 2014. Projektowanie kondensacyjnego wymiennika ciepła odpadowego. Rynek Energii, 111, 87-92.

  • Shi X., Che D., Agnew B., Gao J., 2011. An investigation of the performance of compact heat exchanger for latent heat recovery from exhaust flue gases. Int. J. Heat Mass Transfer, 54, 606-615. DOI: 10.1016/j.ijheatmasstransfer.2010.09.009.

  • Szulc P., Tietze T., Rączka P., Wójs K., 2013. Porównanie wybranych konstrukcji wymienników ciepła pracujących w układzie odzysku ciepła odpadowego ze spalin wylotowych (in Polish). Archiwum Energetyki, 1-4, 11-31.

  • VDI-GVC Editor, 2010. VDI Heat Atlas. 2nd edition, Springer-Verlag, Berlin Heidelberg, 919-932.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 30
PDF Downloads 9 9 7