CFD Modelling of CO2 Capture in a Packed Bed by Chemical Absorption

Open access


The paper deals with numerical modelling of carbon dioxide capture by amine solvent from flue gases in post-combustion technology. A complex flow system including a countercurrent two-phase flow in a porous region, chemical reaction and heat transfer is considered to resolve CO2 absorption. In order to approach the hydrodynamics of the process a two-fluid Eulerian model was applied. At the present stage of model development only the first part of the cycle, i.e. CO2 absorption was included. A series of parametric simulations has shown that carbon dioxide capture efficiency is mostly influenced by the ratio of liquid (aqueous amine solution) to gas (flue gases) mass fluxes. Good consistency of numerical results with experimental data acquired at a small-scale laboratory CO2 capture installation (at the Institute for Chemical Processing of Coal, Zabrze, Poland) has proved the reliability of the model.

  • Alie C.F., 2004. CO2 capture with MEA: Integrating the absorption process and steam cycle of an existing coalfiredpower plant. MSc thesis, University of Waterloo, Waterloo, Ontario, Canada.

  • Asendrych D., Niegodajew P., Drobniak S., 2012. Modelling CO2 capture in post-combustion technology. NowaEnergia, 2, 156-157.

  • Astarita G., Savage D. W., Bisio A., 1983. Gas treating with chemical solvents. Wiley, New York.

  • Barth D., Tondre C., Delpuech J., 1986. Stopped-flow investigation of the reaction kinetics of carbon dioxide with some primary and econdary alkanolamines in aqueous solutions. Int. J. Chem. Kinetics, 18, 445-457. DOI: 10.1002/kin.550180404.

  • Basu S., 2001. Wall effect in laminar flow of non-Newtonian fluid through a packed bed. Chem. Eng. J., 81, 323-329. DOI: 10.1016/S1385-8947(00)00221-7.

  • Billet R., 1995. Packed towers in processing and environmental technology. VCH Verlagsgesellschaft mbH, Weinheim.

  • Crespy A., Bolève A., Revil A., 2007. Influence of the Dukhin and Reynolds numbers on the apparent zeta potential of granular porous media, J. Colloid Interface Sci., 305, 188-194. DOI: 10.1016/j.jcis.2006.09.038.

  • Faiz R., Al-Marzouqi M., 2009. Mathematical modelling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contractors, J. Membrane Sci., 324, 269-278. DOI: 10.1016/j.memsci.2009.06.050.

  • Ferrara F., Cali G., Frau C., Pettinau A., 2009. Experimental and numerical assessment of the CO2 absorption process in the Sotacarbo pilot platform, 1st International Conference on Sustainable Fossil Fuels for FutureEnergy - S4FE.

  • Gaspar J., Cormos A-M., 2010. Dynamic modelling and validation of absorber and desorber columns for postcombustion CO2 capture, Comput. Chem. Eng. J., 35, 2044-2052. DOI: 10.1016/j.compchemeng.2010.10.001.

  • Godini H. R., Mowla D., 2008. Selectivity study of H2S and CO2 absorption from gaseous mixtures by MEA in packed beds. Chem. Eng. Res. Des., 86, 401-409. DOI: 10.1016/j.cherd.2007.11.012.

  • Harun N., Douglas P.L., Ricardez-Sandoval L., Croiset E., 2011. Dynamic simulation of MEA absorption processes for CO2 capture from fossil fuel power plant. Energy Procedia, 4, 1478-1485. DOI: 10.1016/j.egypro.2011.02.014.

  • Knudsen J. N., Jensen J. N., Vilhelmsen P-J., Biede O., 2009. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia, 1, 783-790. DOI: 10.1016/j.egypro.2009.01.104.

  • Kothandaraman A, Nord L., Bolland O., Herzog H.J., McRae G.J., 2009. Comparison of solvents for postcombustion capture of CO2 by chemical absorption. Energy Procedia, 1, 1373-1380. DOI: 10.1016/j.egypro.2009.01.180.

  • Krótki A., Więcław-Solny L., Tatarczuk A., Wilk A., Śpiewak D., 2012. Laboratory research studies of CO2 absorption with the use of 30% aqueous monoethanolamine solution. Archiwum Spalania, vol. 12, nr 4, 195-203.

  • Lawal A., Wang M., Stephenson P., Koumpouras G., Yeung H., 2010. Dynamic modelling and analysis of postcombustion CO2 chemical absorption process for coal-fired power plants. Fuel, 89, 2791-2801. DOI: 10.1016/j.fuel.2010.05.030.

  • Lee S., Maken S., Park J-W., Song H-J., Park J.J., Shim J.-G., Kim J.-H., Eum H.-M., 2008. A study on the carbon dioxide recovery from 2 ton-CO2/day pilot plant at LNG based power plant. Fuel, 87, 1734-1739. DOI: 10.1016/j.fuel.2007.07.027.

  • Mores P., Scenna N., Musatti S., 2011. Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution. Chem. Eng. Res. Des., 89, 1587-1599. DOI: 10.1016/j.cherd.2010.10.012.

  • Moser P., Schmidt S., Sieder G., Garcia H., Stoffregen T., 2011. Performance of MEA in long-term test at the post-combustion capture pilot plant in Niederaussem. Int. J. Greenh. Gas Control 5, 620-627. DOI: 10.1016/j.ijggc.2011.05.011.

  • Niegodajew P., Asendrych D., 2012. Numerical modelling of countercurrent gas-liquid flow through the packed bed. Modelowanie Inżynierskie, 14 (45), 108-115.

  • Notz R., Asprion N., Clausen I., Hasse H., 2007. Selection and pilot plant test of new absorbents for postcombustion carbon dioxide capture. Chem. Eng. Res. Des., 85, 510-515. DOI: 10.1205/cherd06085.

  • Schiller L., Naumann Z., 1935. A drag coefficient correlation, Z. Ver. Deutsch. Ing., 77-318.

  • Simon L.L., Elias Y., Puxty G., Artanto Y., Hungerbuhler K., 2011. Rate based modeling and validation of a carbon-dioxide pilot plant absorption column operating on monoethanolamine. Chem. Eng. Res. Des., 89, 1684-1692. DOI: 10.1016/j.cherd.2010.10.024.

  • Vaidya P.D., Kenig E.Y., 2007. CO2-alkanolamine reaction kinetics: A review of recent studies. Chem. Eng. Technol., 30, 1467-1474. DOI: 10.1002/ceat.200700268.

  • Weiland R.H., Dingman J.C., Cronin D.B., Browning G.J., 1998. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. J. Chem. Eng. Data, 43, 378-382. DOI: 10.1021/je9702044.

  • Xu Y., Paschke S., Repke J.-U., Yuan J., Wozny G., 2008. Portraying the countercurrent flow on packings by three-dimensional computational fluid dynamics simulations. Chem. Eng. Technol., 31, 10, 1445-1452. DOI: 10.1002/ceat.200800273.

  • Zhao C.S., Duan L.B., Chen X.P. Liang C., 2010. Latest evolution of oxy-fuel combustion technology in circulating fluidized bed. Proc. 20th Int. Conference on Fluidized Bed Combustion, V.2009, Xian, China, 49-58.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 68 45
PDF Downloads 25 25 20