Cite

Estimating soil hydraulic properties are so important for hydrological modeling, designing irrigation-drainage systems and soil transmission of soluble salts and pollutants, although measurements of such parameters have been found costly and time-consuming. Owing to a high spatial variability of soil hydraulic characteristics, a large number of soil samples are required for proper analysis. Nowadays, geostatistical methods are used to estimate soil parameters on the basis of limited data. The purpose of this research is to investigate the spatial variability of the permeability coefficient in different soil textures (26 soil samples) found in the Kurdistan region of Iraq. The parameter values obtained indicated a normal trend in particle size distribution, whereas the values of permeability coefficient showed aberrant distribution patterns. Geostatistical analysis results indicated the best fitted theoretical model was Gaussian model and the proportion of sill/(sill + nugget) was 0.17 indicated strong spatial dependency of soil permeability. Furthermore, the optimal distance for estimating the soil permeability coefficient was 109,119 meters. A comparison of the kriging and IDW interpolation methods showed that both methods can estimate soil permeability with high accuracy and less error. The prediction maps of the applied methods indicated that high soil permeability rates were recorded in the south-east of the Kurdistan region of Iraq compared to low soil permeability rates recorded in the remainder of this region. It is recommended other interpolation methods such as co-kriging and indicator or simple kriging methods could be used to simulate data in large scale areas as well.

eISSN:
2466-4774
Language:
English