Microbial Activity in Forest Soil Under Beech, Spruce, Douglas Fir and Fir

Open access

Summary

The aim of this research was to investigate the microbial activity in forest soil from different sites under deciduous and coniferous trees in Serbia. One site on Stara planina was under beech trees (Fagus sp.) while another under mixture of spruce (Picea sp.) and Douglas fir (Pseudotsuga sp.). The site on Kopaonik was under mixture of beech (Fagus sp.) and spruce (Picea sp.) trees. The site on Tara was dominantly under fir (Abies sp.), beech (Fagus sp.) and spruce (Picea sp.). The total number of bacteria, the number of actinobacteria, fungi and microorganisms involved in N and C cycles were determined using standard method of agar plates. The activities of dehydrogenase and ß-glucosidase enzymes were measured by spectrophotometric methods. The microbial activity was affected by tree species and sampling time. The highest dehydrogenase activity, total number of bacteria, number of actinobacteria, aminoheterotrophs, amylolytic and cellulolytic microorganisms were determined in soil under beech trees. The highest total number of fungi and number of pectinolytic microorganisms were determined in soil under spruce and Douglas fir trees. The correlation analyses proved the existence of statistically significant interdependency among investigated parameters.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • BALDRIAN P. ŠNAJDR J. MERHAUTOVA V. DOBIAŠOVA P. CAJTHAMI T. VALAŠKOVA V.: Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biology and Biochemistry 56: 60-68 2013.

  • DAS B. ASHIS CH. GHOSH S. CHAKRABARTI K.: Studies on the effect of pH and carbon sources on enzyme activities of some pectinolytic bacteria isolated from jute retting water. Turkish Journal of Biology 35: 671-678 2011

  • FROSTEGARD A. BAATH E.: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils 22: 59-65 1996.

  • HAYANO K.: A method for the determination of b-glukosidase activity in soil. Soil Science and Plant Nutrition 19: 103-108 1973.

  • HÖGBERG M.N. HÖGBERG P. MYROLD D.D.: Is microbial community composition in boreal forest soils determined by pH C-to-N ratio the trees or all three? Oecologia 150: 590-601 2007.

  • KAISER C. FUCHSLUENGER L. KORANDA M. GORFER M. STANGE C. KITZLER B. RASCHE F. STRAUSS J. SESSITSCH A. ZECHMEISTER-BOLTENSTERN S. RICHTER A.: Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology 92: 1036-1051 2011.

  • KANERVA S. KITUNEN V. KIIKKILÄ O. LOPONEN J. SMOLANDER A.: Response of soil C and N transformations to tannin fractions originating from Scots pine and Norway spruce needles. Soil Biology and Biochemistry 38: 1364–1374 2006.

  • KILLHAM K.: Soil ecology. Cambridge: Cambridge University Press. p. 242 1994.

  • LENHARD G.: Die dehydrogenase aktivitat das Bodeusald Mass fur die Mikroorganizmentatigk eit im Boden. Z. Pflansenern. Dung Bodenkude 73: 1-11 1956.

  • LIPSON D.A. SCHMIDT S.K.: Seasonal Changes in an Alpine Soil Bacterial Community in the Colorado Rocky Mountains. Applied Environmental Microbiology 70 (5): 2867-2879 2004.

  • MANNINEN A.M. TARHANEN S. VUORINEN M. KAINULAINEN P.: Comparing the variation of needle and wood terpenoids in Scots pine provenances. Journal of Chemical Ecology 28: 211–227 2002.

  • MENYAILO O.V. HUNGATE B.A. ZECH W.: Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment: tree species and soil chemistry. Plant and Soil 242: 171-182 2002.

  • MIKOLA P. : Experiment on the rate of decomposition of forest litter. Communicationes Instituti Forestalis Fenniae 43: 1-50 1954.

  • NIEMINEN T.M. SMOLANDER A.: Forest under-storey vegetation and plant litter decomposition under three different dominant tree species. In: Räty M. Bärlund I. Makkonen K. Kähkönen M. & Esala M. (eds.). Miten maamme makaa – Suomen maaperä ja sen tila. IV Maaperätieteiden päivien laajennetut abstraktit. Pro Terra 29: 54-55 2006.

  • PRIHA O. SMOLANDER A.: Microbial biomass and activity in soil and litter under Pinus sylvestris Picea abies and Betula pendula at originally similar field afforestation sites. Biology and Fertility of Soils 24: 45-51 1997.

  • PRIHA O. GRAYSTON S.J. HIUKKA R. PENNANEN T. SMOLANDER A.: Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestrisPicea abies and Betula pendula at two forest sites. Biology and Fertility of Soils 33: 17-24 2001.

  • ŠNAJDR J. VALÁŠKOVÁ V. MERHAUTOVÁ V. HERINKOVÁ J. CAJTHAML T. BALDRIAN P.: Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology and Biochemistry 40: 2068–2075 2008.

  • THALMANN A.: Zur Methodik des Bestmmung des Dehydrogenase aktivitat im Bodenmittels TTC. Landiw Forch 21: 249-258 1968.

  • THEUERL S. BUSCOT F.: Laccases: Toward disentagling their diversity and functions in relation tp soil organic matter cycling. Biology and Fertility of Soils 46: 215-225 2010.

  • TROLLDENIER G.: Plate Count Technique. In: Franz Schinner Ellen Kandeler Richard Ohlinger Rosa Margesin (eds.): Methods in Soil Biology… Germany Springer-Verlag Berlin Heideberg: 20-26 1996.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 394 280 14
PDF Downloads 154 115 10