Review on Challenges and Limitations for Algae-Based Wastewater Treatment

Open access

Abstract

Microalgae biomass production is recognized as a cost-effective and sustainable alternative to currently used approaches to tertiary wastewater treatment. However, such limitations, as algae biomass separation from water, process efficiency in cold climate and the algae biomass ability to reduce micropollutant content in wastewater hamper this method from full-scale use. This review discusses the identified drawbacks and offers possible improvements and modifications for wastewater phycobioremediation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] W. K. Dodds W. W. Bouska J. L. Eitzmann T. J. Pilger K. L. Pitts A. J. Riley J. T. Schloesser and D. J. Thornbrugh “Eutrophication of U.S. Freshwaters: Analysis of Potential Economic Damages” Environmental Science & Technology vol. 43 no. 1 pp. 12–19 2009. https://doi.org/10.1021/es801217q

  • [2] K. Yang Z. Li H. Zhang J. Qian and G. Chen “Municipal wastewater phosphorus removal by coagulation” Environmental Technology vol. 31 no. 6 pp. 601–609 2010. https://doi.org/10.1080/09593330903573223

  • [3] G. K. Morse S. W. Brett J. A. Guy and J. N. Lester “Review: Phosphorus removal and recovery technologies” The Science of The Total Environment vol. 212 no. 1 pp. 69–81 1998. https://doi.org/10.1016/s0048-9697(97)00332-x

  • [4] M. Molinos-Senante F. Hernández-Sancho and R. Sala-Garrido “Economic feasibility study for wastewater treatment: A cost-benefit analysis” Science of The Total Environment vol. 408 no. 20 pp. 4396–4402 2010. https://doi.org/10.1016/j.scitotenv.2010.07.014

  • [5] Z. Arbib J. Ruiz P. Álvarez-Díaz C. Garrido-Pérez and J. A. Perales “Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment CO2 bio-fixation and low cost biofuels production” Water Research vol. 49 pp. 465–474 2014. https://doi.org/10.1016/j.watres.2013.10.036

  • [6] F. Gao C. Li Z. H. Yang G. M. Zeng J. Mu M. Liu and W. Cui “Removal of nutrients organic matter and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor” Journal of Chemical Technology & Biotechnology vol. 91 no. 10 pp. 2713–2719 2016. https://doi.org/10.1002/jctb.4879

  • [7] J.-H. Wang T.-Y. Zhang G.-H. Dao X.-Q. Xu X.-X. Wang and H.-Y. Hu “Microalgae-based advanced municipal wastewater treatment for reuse in water bodies” Applied Microbiology and Biotechnology pp. 2659–2675 2017. https://doi.org/10.1007/s00253-017-8184-x

  • [8] M. A. Borowitzka “High-value products from microalgae-their development and commercialisation” Journal of Applied Phycology vol. 25 no. 3 pp. 743–756 2013. https://doi.org/10.1007/s10811-013-9983-9

  • [9] J. J. Milledge and S. Heaven “A review of the harvesting of micro-algae for biofuel production” Reviews in Environmental Science and Bio/Technology vol. 12 no. 2 pp. 165–178 2013. https://doi.org/10.1007/s11157-012-9301-z

  • [10] B. Petrie R. Barden and B. Kasprzyk-Hordern “A review on emerging contaminants in wastewaters and the environment: Current knowledge understudied areas and recommendations for future monitoring” Water Research vol. 72 no. 0 pp. 3–27 2014. https://doi.org/10.1016/j.watres.2014.08.053

  • [11] M. P. Johnson “Photosynthesis” Essays in Biochemestry vol. 60 no. 3 pp. 255–273 2016. https://doi.org/10.1042/ebc20160016

  • [12] W. J. Oswald H. B. Gotaas C. G. Golueke W. R. Kellen E. F. Gloyna and E. R. Hermann “Algae in Waste Treatment [with Discussion]” Sewage and Industrial Wastes vol. 29 no. 4 pp. 437–457 1957.

  • [13] W. J. Oswald “The Coming Industry of Controlled Photosynthesis” American Journal of Public Health and the Nations Health vol. 52 no. 2 pp. 235–242 1962. https://doi.org/10.2105/ajph.52.2.235

  • [14] J. Hemens and M. H. Mason “Sewage nutrient removal by a shallow algal stream” Water Research vol. 2 no. 4 pp. 277–287 1968. https://doi.org/10.1016/0043-1354(68)90020-1

  • [15] J. C. Dodd “Algae production and harvesting from animal wastewaters” Agricultural Wastes vol. 1 no. 1 pp. 23–37 1979. https://doi.org/10.1016/0141-4607(79)90004-0

  • [16] F. G. Gentili and J. Fick “Algal cultivation in urban wastewater: an efficient way to reduce pharmaceutical pollutants” Journal of Applied Phycology pp. 1–8 2016. https://doi.org/10.1007/s10811-016-0950-0

  • [17] K. K. Yadav N. Gupta V. Kumar and J. K. Singh “Bioremediation of Heavy Metals From Contaminated Sites Using Potential Species : A Review” Indian Journal of Environmental Protection vol. 37 no. 1 pp. 65–84 2017.

  • [18] Z. Arbib I. de Godos J. Ruiz and J. A. Perales “Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production” Science of the Total Environment vol. 589 pp. 66–72 2017. https://doi.org/10.1016/j.scitotenv.2017.02.206

  • [19] T. Cai S. Y. Park and Y. Li “Nutrient recovery from wastewater streams by microalgae: Status and prospects” Renewable Sustainable Energy Reviews vol. 19 pp. 360–369 2013. https://doi.org/10.1016/j.rser.2012.11.030

  • [20] R. Whitton F. Ometto and M. Pidou “Microalgae for municipal wastewater nutrient remediation: mechanisms reactors and outlook for tertiary treatment” Environmental Technology Reviews vol. 4 no. 1 pp. 133–148 2015. https://doi.org/10.1080/21622515.2015.1105308

  • [21] A. Beuckels E. Smolders and K. Muylaert “Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment” Water Research vol. 77 pp. 98–106 2015. https://doi.org/10.1016/j.watres.2015.03.018

  • [22] Y. H. Wu Y. Yu X. Li H. Y. Hu and Z. F. Su “Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition” Bioresource Technology vol. 112 pp. 193–198 2012. https://doi.org/10.1016/j.biortech.2012.02.037

  • [23] M. D. Guiry “How many species of algae are there?” Journal of Phycology vol. 48 no. 5 pp. 1057–1063 2012. https://doi.org/10.1111/j.1529-8817.2012.01222.x

  • [24] C. M. Palmer “A composite rating of algae tolerating organic pollution” Journal of Phycology vol. 5 no. 1 pp. 78–82 1969. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x

  • [25] A. F. Aravantinou M. A. Theodorakopoulos and I. D. Manariotis “Selection of microalgae for wastewater treatment and potential lipids production” Bioresource Technology vol. 147 pp. 130–134 2013. https://doi.org/10.1016/j.biortech.2013.08.024

  • [26] M. Wang Y. Yang Z. Chen Y. Chen Y. Wen and B. Chen “Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae” Bioresource Technology vol. 222 pp. 130–138 2016. https://doi.org/10.1016/j.biortech.2016.09.128

  • [27] P. D. Álvarez-Díaz J. Ruiz Z. Arbib J. Barragán M. C. Garrido-Pérez and J. A. Perales “Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production” Algal Research 2017. https://doi.org/10.1016/j.algal.2017.02.006

  • [28] L. Wang M. Min Y. Li P. Chen Y. Chen Y. Liu Y. Wang and R. Ruan “Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant” Applied Biochemestry and Biotechnology. vol. 162 no. 4 pp. 1174–1186 2010. https://doi.org/10.1007/s12010-009-8866-7

  • [29] C. U. Ugwu H. Aoyagi and H. Uchiyama “Photobioreactors for mass cultivation of algae” Bioresource Technology vol. 99 no. 10 pp. 4021–4028 2008. https://doi.org/10.1016/j.biortech.2007.01.046

  • [30] S. P. Singh and P. Singh “Effect of temperature and light on the growth of algae species: A review” Renewable and Sustainable Energy Reviews vol. 50 pp. 431–444 2015. https://doi.org/10.1016/j.rser.2015.05.024

  • [31] S. P. Singh and P. Singh “Effect of CO2 concentration on algal growth: A review” Renewable and Sustainable Energy Reviews vol. 38 pp. 172–179 2014. https://doi.org/10.1016/j.rser.2014.05.043

  • [32] M. T. Ale M. Pinelo and A. S. Meyer “Assessing Effects and interactions among key variables affecting the growth of mixotrophic microalgae: pH inoculum volume and growth medium composition” Preparative Biochemistry and Biotechnology vol. 44 no. 3 pp. 242–256 2014. https://doi.org/10.1080/10826068.2013.812562

  • [33] M. L. Teoh S. M. Phang and W. L. Chu “Response of Antarctic temperate and tropical microalgae to temperature stress” Journal of Applied Phycology vol. 25 no. 1 pp. 285–297 2013. https://doi.org/10.1007/s10811-012-9863-8

  • [34] K. Larsdotter “Wastewater treatment with microalgae – a literature review” Vatten vol. 62 pp. 31–38 2006.

  • [35] P. Tett M. R. Droop and S. I. Heaney “The Redfield Ratio and Phytoplankton Growth Rate” Journal of the Marine Biological Association of the United Kingdom vol. 65 no. 2 pp. 487–504 1985. https://doi.org/10.1017/s0025315400050566

  • [36] S. P. Cuellar-Bermudez G. S. Aleman-Nava R. Chandra J. S. Garcia-Perez J. R. Contreras-Angulo G. Markou K. Muylaert B. E. Rittmann and R. Parra-Saldivar “Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater” Algal Research 2016. https://doi.org/10.1016/j.algal.2016.08.018

  • [37] H. Jia and Q. Yuan “Removal of nitrogen from wastewater using microalgae and microalgae-bacteria consortia” Cogent Environmental Science vol. 2 no. 1 pp. 1–15 2016. https://doi.org/10.1080/23311843.2016.1275089

  • [38] D. C. Kligerman and E. J. Bouwer “Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review” Renewable and Sustainable Energy Reviews vol. 52 pp. 1834–1846 2015. https://doi.org/10.1016/j.rser.2015.08.030

  • [39] R. Slade and A. Bauen “Micro-algae cultivation for biofuels: Cost energy balance environmental impacts and future prospects” Biomass and Bioenergy vol. 53 no. 0 pp. 29–38 2013. https://doi.org/10.1016/j.biombioe.2012.12.019

  • [40] E. M. Grima F. G. Acie A. R. Medina and Y. Chisti “Recovery of microalgal biomass and metabolites : process options and economics” Biotechnology Advances vol. 20 no. 7–8 pp. 491–515 2003. https://doi.org/10.1016/s0734-9750(02)00050-2

  • [41] M. Singh R. Shukla and K. Das “Harvesting of Microalgal Biomass” Biotechnological Applications of Microalgae pp. 77–88 2013. https://doi.org/10.1201/b14920-7

  • [42] L. Amer B. Adhikari and J. Pellegrino “Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity” Bioresource Technology vol. 102 no. 20 pp. 9350–9359 Oct. 2011. https://doi.org/10.1016/j.biortech.2011.08.010

  • [43] P. Collet A. Hélias L. Lardon M. Ras R.-A. Goy and J.-P. Steyer “Life-cycle assessment of microalgae culture coupled to biogas production” Bioresource Technology vol. 102 no. 1 pp. 207–214 Jan. 2011. https://doi.org/10.1016/j.biortech.2010.06.154

  • [44] I. Rawat R. Ranjith Kumar T. Mutanda and F. Bux “Biodiesel from microalgae: A critical evaluation from laboratory to large scale production” Applied Energy vol. 103 pp. 444–467 2013. https://doi.org/10.1016/j.apenergy.2012.10.004

  • [45] L. Christenson and R. Sims “Production and harvesting of microalgae for wastewater treatment biofuels and bioproducts” Biotechnology Advances vol. 29 no. 6 pp. 686–702 2011. https://doi.org/10.1016/j.biotechadv.2011.05.015

  • [46] I. Udom B. H. Zaribaf T. Halfhide B. Gillie O. Dalrymple Q. Zhang and S. J. Ergas “Harvesting microalgae grown on wastewater” Bioresource Technology vol. 139 pp. 101–106 2013. https://doi.org/10.1016/j.biortech.2013.04.002

  • [47] L. Gouveia S. Graça C. Sousa L. Ambrosano B. Ribeiro E. P. Botrel P. C. Neto A. F. Ferreira and C. M. Silva “Microalgae biomass production using wastewater: Treatment and costs” Algal Research vol. 16 pp. 167–176 2016. https://doi.org/10.1016/j.algal.2016.03.010

  • [48] N. Uduman Y. Qi M. K. Danquah G. M. Forde and A. Hoadley “Dewatering of microalgal cultures : A major bottleneck to algae-based fuels” Journal of Renewable and Sustainable Energy vol. 2 no. 1 p. 012701 2010. https://doi.org/10.1063/1.3294480

  • [49] P. M. Schenk S. R. Thomas-Hall E. Stephens U. C. Marx J. H. Mussgnug C. Posten O. Kruse and B. Hankamer “Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production” BioEnergy Research vol. 1 no. 1 pp. 20–43 2008. https://doi.org/10.1007/s12155-008-9008-8

  • [50] X. Zhang P. Amendola J. C. Hewson M. Sommerfeld and Q. Hu “Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation” Bioresource Technology vol. 116 pp. 477–484 Jul. 2012. https://doi.org/10.1016/j.biortech.2012.04.002

  • [51] J. Hanotu H. C. H. Bandulasena and W. B. Zimmerman “Microflotation performance for algal separation” Biotechnology and Bioengineering vol. 109 no. 7 pp. 1663–1673 2012. https://doi.org/10.1002/bit.24449

  • [52] Y. Shen W. Yuan Z. J. Pei Q. Wu and E. Mao “Microalgae Mass Production Methods” Transactions of the ASABE vol. 52 no. 4 pp. 1275–1287 2009. https://doi.org/10.13031/2013.27771

  • [53] H. Shimamatsu “Mass production of Spirulina an edible microalga” Hydrobiologia vol. 512 no. 1 pp. 39–44 2004. https://doi.org/10.1023/b:hydr.0000020364.23796.04

  • [54] S. Babel and S. Takizawa “Microfiltration membrane fouling and cake behavior during algal filtration” Desalination vol. 261 no. 1–2 pp. 46–51 Oct. 2010. https://doi.org/10.1016/j.desal.2010.05.038

  • [55] I. Moreno-Garrido “Microalgae immobilization: Current techniques and uses” Bioresource Technology vol. 99 no. 10 pp. 3949–3964 2008. https://doi.org/10.1016/j.biortech.2007.05.040

  • [56] S. Fierro M. del Pilar Sánchez-Saavedra and C. Copalcúa “Nitrate and phosphate removal by chitosan immobilized Scenedesmus” Bioresource Technology vol. 99 no. 5 pp. 1274–1279 2008. https://doi.org/10.1016/j.biortech.2007.02.043

  • [57] C. E. Blank R. W. Parks and N. W. Hinman “Chitin: a potential new alternative nitrogen source for the tertiary algal-based treatment of pulp and paper mill wastewater” Journal of Applied Phycology pp. 1–14 2016. https://doi.org/10.1007/s10811-016-0808-5

  • [58] A. Ruiz-Marin L. G. Mendoza-Espinosa and T. Stephenson “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater” Bioresource Technology vol. 101 no. 1 pp. 58–64 2010. https://doi.org/10.1016/j.biortech.2009.02.076

  • [59] L. E. De-Bashan M. Moreno J. P. Hernandez and Y. Bashan “Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense” Water Research vol. 36 no. 12 pp. 2941–2948 2002. https://doi.org/10.1016/s0043-1354(01)00522-x

  • [60] L. Y. Kawasaki E. Tarifeno-Silva D. P. Yu M. S. Gordon and D. J. Chapman “Aquacultural approaches to recycling of dissolved nutrients in secondarily treated domestic wastewaters – I Nutrient uptake and release by artificial food chains” Water Research vol. 16 pp. 37–49 1982. https://doi.org/10.1016/0043-1354(82)90051-3

  • [61] S. R. Kim S. S. Woo E. H. Cheong and T. S. Ahn “Nutrient removal from sewage by an artificial food web system composed of phytoplankton and Daphnia magna” Ecological Engineering vol. 21 no. 4–5 pp. 249–258 2003. https://doi.org/10.1016/j.ecoleng.2003.11.003

  • [62] D. Jung A. Cho Y. G. Zo S. I. Choi and T. S. Ahn “Nutrient removal from polluted stream water by artificial aquatic food web system” Hydrobiologia vol. 630 no. 1 pp. 149–159 2009. https://doi.org/10.1007/s10750-009-9788-7

  • [63] I. H. Chang D. Jung and T. S. Ahn “Improving the effectiveness of a nutrient removal system composed of Microalgae and Daphnia by an artificial illumination” Sustainability vol. 6 no. 3 pp. 1346–1358 2014. https://doi.org/10.3390/su6031346

  • [64] N. Guo J. A. Dowing C. T. Filstrup D. Yu W. Ji and Y. Ma “Removal of Agricultural Non-Point Source Pollutants by Artificial Aquatic Food Web System: A Study Case of the Control of Cynobacterial Bloom in Jiyu River” Open Journal of Ecology vol. 6 no. 12 pp. 699–713 2016. https://doi.org/10.4236/oje.2016.612064

  • [65] J. Vymazal “Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment” Ecological Engineering vol. 25 pp. 478–490 2005. https://doi.org/10.1016/j.ecoleng.2005.07.010

  • [66] M. Z. Khan P. K. Mondal and S. Sabir “Aerobic granulation for wastewater bioremediation: A review” The Canadian Journal of Chemical Engineering vol. 91 no. 6 pp. 1045–1058 2013. https://doi.org/10.1002/cjce.21729

  • [67] Z. N. Norvill A. Shilton and B. Guieysse “Emerging contaminant degradation and removal in algal wastewater treatment ponds: Identifying the research gaps” Journal of Hazardous Materials vol. 313 pp. 291–309 2016. https://doi.org/10.1016/j.jhazmat.2016.03.085

  • [68] R. P. Schwarzenbach B. I. Escher K. Fenner T. B. Hofstetter C. A. Johnson U. von Gunten and B. Wehrli “The Challenge of Micropollutants in Aquatic Systems” Science vol. 313 no. 5790 pp. 1072–1077 2006. https://doi.org/10.1126/science.1127291

  • [69] E. D. O. Ansa H. J. Lubberding and H. J. Gijzen “The effect of algal biomass on the removal of faecal coliform from domestic wastewater” Applied Water Science vol. 2 no. 5 pp. 87–94 2012. https://doi.org/10.1007/s13201-011-0025-y

  • [70] D. Mani and C. Kumar “Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation” International Journal of Environmental Science and Technology vol. 11 no. 3 pp. 843–872 2014. https://doi.org/10.1007/s13762-013-0299-8

  • [71] V. V. Ranade and V. M. Bhandari “Industrial Wastewater Treatment Recycling and Reuse” Industrial Wastewater Treatment Recycling and Reuse pp. 1–80 2014. https://doi.org/10.1016/b978-0-08-099968-5.00001-5

  • [72] F. Fu and Q. Wang “Removal of heavy metal ions from wastewaters: A review” Journal of Environmental Management vol. 92 no. 3 pp. 407–418 2011. https://doi.org/10.1016/j.jenvman.2010.11.011

  • [73] L. Ji S. Xie J. Feng Y. Li and L. Chen “Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta” Journal of Applied Phycology vol. 24 no. 4 pp. 979–983 2012. https://doi.org/10.1007/s10811-011-9721-0

  • [74] A. Enduta A. Jusoh N. Ali and W. B. Wan Nik “Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system” Desalination and Water Treatment vol. 32 no. 1–3 pp. 422–430 Aug. 2011. https://doi.org/10.5004/dwt.2011.2761

  • [75] C. B. Sekomo D. P. L. Rousseau S. A. Saleh and P. N. L. Lens “Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment” Ecological Engineering vol. 44 pp. 102–110 2012. https://doi.org/10.1016/j.ecoleng.2012.03.003

  • [76] C. P. Gerba “Pathogen Removal” Biological Wastewater Treatment: Principles Modelling and Design pp. 220–272 2008.

  • [77] I. George P. Crop and P. Servais “Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods” Water Research vol. 36 no. 10 pp. 2607–2617 2002. https://doi.org/10.1016/s0043-1354(01)00475-4

  • [78] F. Zarpelon D. Galiotto C. Aguzolli L. N. Carli C. A. Figueroa I. J. R. Baumvol G. Machado J. D. S. Crespo and M. Giovanela “Removal of coliform bacteria from industrial wastewaters using polyelectrolytes/silver nanoparticles self-assembled thin films” Journal of Environmental Chemical Engineering vol. 4 no. 1 pp. 137–146 2016. https://doi.org/10.1016/j.jece.2015.11.013

  • [79] M. Rangeby P. Johansson and M. Pernrup “Removal of faecal coliforms in a wastewater stabilisation pond system in Mindelo Cape Verde” Water Science and Technology vol. 34 no. 11 pt 7 pp. 149–157 1996. https://doi.org/10.1016/s0273-1223(96)00832-3

  • [80] E. D. O. Ansa H. J. Lubberding J. A. Ampofo G. B. Amegbe and H. J. Gijzen “Attachment of faecal coliform and macro-invertebrate activity in the removal of faecal coliform in domestic wastewater treatment pond systems” Ecological Engineering vol. 42 pp. 35–41 2012. https://doi.org/10.1016/j.ecoleng.2012.01.018

  • [81] T. P. Curtis D. D. Mara and S. a. Silva “Influence of pH Oxygen and Humic substances on ability of sunlight to dammage fecal-Coliforms in waste stabilisation pond water” Applied and Environmental Microbiology vol. 58 no. 4 pp. 1335–1343 1992.

  • [82] R. J. Davies-Colley A. M. Donnison D. J. Speed C. M. Ross and J. W. Nagels “Inactivation of faecal indicator micro-organisms in waste stabilisation ponds: Interactions of environmental factors with sunlight” Water Research vol. 33 no. 5 pp. 1220–1230 1999. https://doi.org/10.1016/s0043-1354(98)00321-2

  • [83] C. Bouteleux S. Saby D. Tozza J. Cavard V. Lahoussine P. Hartemann and L. Mathieu “Escherichia coli Behavior in the Presence of Organic Matter Released by Algae Exposed to Water Treatment Chemicals” Applied and Environmental Microbiology vol. 71 no. 2 pp. 734–740 2005. https://doi.org/10.1128/aem.71.2.734-740.2005

  • [84] E. D. O. Ansa A. H. Andoh P. Nienu R. Banu M. Akrong M. AAcheampong and J. Adiyiah “Sunlight inactivation of faecal coliforms in domestic wastewater” Desalination and Water Treatment vol. 3994 no. January pp. 1–8 2015. https://doi.org/10.1080/19443994.2015.1063010

  • [85] E. D. O. Ansa H. J. Lubberding J. A. Ampofo and H. J. Gijzen “The role of algae in the removal of Escherichia coli in a tropical eutrophic lake” Ecological Engineering vol. 37 no. 2 pp. 317–324 2011. https://doi.org/10.1016/j.ecoleng.2010.11.023

  • [86] S. D. Richardson and T. A. Ternes “Water Analysis : Emerging Contaminants and Current Issues” Analytical Chemistry vol. 77 no. 12 pp. 3807–3838 2005. https://doi.org/10.1021/ac0301301

  • [87] N. Bolong A. F. Ismail M. R. Salim and T. Matsuura “A review of the effects of emerging contaminants in wastewater and options for their removal” Desalination vol. 238 no. 1–3 pp. 229–246 2009. https://doi.org/10.1016/j.desal.2008.03.020

  • [88] E. Prichard and E. F. Granek “Effects of pharmaceuticals and personal care products on marine organisms: from single-species studies to an ecosystem-based approach” Environmental Science and Pollution Research vol. 23 no. 22 pp. 22365–22384 2016. https://doi.org/10.1007/s11356-016-7282-0

  • [89] C. Miège J. M. Choubert L. Ribeiro M. Eusèbe and M. Coquery “Fate of pharmaceuticals and personal care products in wastewater treatment plants – Conception of a database and first results” Environmental Pollution vol. 157 no. 5 pp. 1721–6 2009. https://doi.org/10.1016/j.envpol.2008.11.045

  • [90] P. Westerhoff S. A. Snyder Y. Yoon S. A. Snyder and E. Wert “Fate of Endocrine-Disruptor Pharmaceutical and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes” Environmental Science and Technology vol. 39 no. 17 pp. 6649–6663 Sep. 2005. https://doi.org/10.1021/es0484799

  • [91] Y. Yoon P. Westerhoff S. A. Snyder and E. C. Wert “Nanofiltration and ultrafiltration of endocrine disrupting compounds pharmaceuticals and personal care products” Journal of Membrane Science vol. 270 no. 1–2 pp. 88–100 Feb. 2006. https://doi.org/10.1016/j.memsci.2005.06.045

  • [92] T. Lv Y. Zhang L. Zhang P. N. Carvalho C. A. Arias and H. Brix “Removal of the pesticides imazalil and tebuconazole in saturated constructed wetland mesocosms” Water Research vol. 91 pp. 126–136 2016. https://doi.org/10.1016/j.watres.2016.01.007

  • [93] Y. Chen J. Vymazal T. Brezinova M. Koželuh L. Kule J. Huang and Z. Chen “Occurrence removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands” Science of the Total Environment vol. 566–567 pp. 1660–1669 2016. https://doi.org/10.1016/j.scitotenv.2016.06.069

  • [94] A. Hom-Diaz A. Jaén-Gil I. Bello-Laserna S. Rodríguez-Mozaz T. Vicent D. Barceló and P. Blánquez “Performance of a microalgal photobioreactor treating toilet wastewater: Pharmaceutically active compound removal and biomass harvesting” Science of the Total Environment vol. 592 pp. 1–11 2017. https://doi.org/10.1016/j.scitotenv.2017.02.224

  • [95] J. J. Schmidt G. A. Gagnon and R. C. Jamieson “Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions” Ecological Engineering vol. 95 pp. 588–593 2016. https://doi.org/10.1016/j.ecoleng.2016.06.114

  • [96] R. J. Craggs P. J. McAuley and V. J. Smith “Wastewater nutrient removal by marine microalgae grown on a corrugated raceway” Water Research vol. 31 no. 7 pp. 1701–1707 1997. https://doi.org/10.1016/s0043-1354(96)00093-0

  • [97] E. P. Y. Tang W. F. Vincent D. Proulx P. Lessard and J. De la Noüe “Polar cyanobacteria versus green algae for tertiary waste-water treatment in cool climates” Journal of Applied Phycology vol. 9 no. 4 pp. 371–381 1997.

  • [98] E. Grönlund “Microalgae at wastewater pond treatment in cold climate – an ecological engineering approach” Doctoral thesis Department of Civil and Environmental Engineering Division of Sanitary Engineering Lulea University of Technology Östersund Sweden 2004.

  • [99] B. Guterstam “Demonstrating ecological engineering for wastewater treatment in a Nordic climate using aquaculture principles in a greenhouse mesocosm” Ecological Engineering vol. 6 pp. 73–97 1996. https://doi.org/10.1016/0925-8574(95)00052-6

  • [100] A. Norström “Treatment of domestic wastewater using microbiological processes and hydroponics in Sweden” Doctoral thesis Department of Biotechnology Division of Applied Environmental Microbiology Royal Institute of Technology Stockholm Sweden 2005.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1074 660 37
PDF Downloads 952 758 116