Effective combination of microgravimetry and geoelectrical methods in the detection of subsurface cavities in archaeological prospection – selected case-studies from Slovakia

Open access

Abstract

This contribution is focused on a common utilization of microgravimetry (very precise and detailed gravimetry) and geoeletrical methods (ground penetrating radar and electric resistivity tomography) in the detection of subsurface cavities in non-destructive archaeological prospection. Both methods can separately detect such kind of subsurface objects, but their complementary and at the same time an eliminating aspect can be very helpful in the interpretation of archaeogeophysical datasets. These properties were shown in various published case-studies. Here we present some more typical examples. Beside this, we present here for a first time an application of the electric resistivity tomography in the interior of a building (a church) in Slovakia. We also demonstrate an example with an extremely small acquisition step in microgravity as a trial for the detection of cavities with very small dimensions – in this case small separated spaces for coffins as a part of the detected crypt (so called columbarium). Unfortunately, these cavities were too small to be reliably detected by the microgravity method. We have tried the well-known 3D Euler deconvolution method to obtain usable depth estimates from the acquired anomalous gravity field. Results from this method were in the majority of cases plausible (sometimes little bit too shallow), when compared with the results from the ground penetrating radar. In one selected example, the 3D Euler solutions were too deep and in the present stage of study we cannot well explain this situation. In general, all presented results support an important role of common combination of several geophysical methods, when searching for subsurface cavities in non-destructive archaeological prospection.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Blížkovský M. 1979: Processing and applications in microgravity surveys. Geophys. Prospect. 27 4 848–861 doi: 10.1111/j.1365-2478.1979.tb01002.x.

  • Cady J. W. 1980: Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms. Geophysics 45 10 1507–1512 doi: 10.1190/1.1441045.

  • Cataldo R. D’Agostino D. Leucci G. 2012: Insights into the Buried Archaeological Remains at the Duomo of Lecce (Italy) Using Ground-penetrating Radar Surveys. Archaeol. Prospect. 19 3 157–165 doi: 10.1002/arp.1423.

  • Clark A. 1990: Seeing Beneath the Soil: Prospecting Methods in Archaeology. Bathsford 196 p.

  • Gaffney C. Gater J. 2003: Revealing the Buried Past: Geophysics for Archaeologists. Tempus 192 p.

  • Lakshmanan J. Montlucon J. 1987: Microgravity probes the Great Pyramid. Lead. Edge 6 1 10–17 doi: 10.1190/1.1439319.

  • Leucci G. 2006: Contribution of Ground Penetrating Radar and Electrical Resistivity Tomography to identify the cavity and fractures under the main Church in Botrugno (Lecce Italy). J. Archaeol. Sci. 33 9 1194–1204 doi: 10.1016/j.jas.2005.12.009.

  • Linford N. 2006: The application of geophysical methods to archaeological prospection. Rep. Prog. Phys. 69 7 2205–2257 doi: 10.1088/0034-4885/69/7/R04.

  • Loke M. H. 2002: Tutorial: 2-D and 3-D electrical imaging surveys. Manuscript online accessed 2019-11-20 available from: http://personales.upv.es/jpadin/coursenotes.pdf.

  • Mrlina J. Křivánek R. Majer A. 2005: Geophysical Survey in the St. Vitus Cathedral in Prague (Geofyzikální prùzkum k lokalizaci hrobky v katedrále sv. Víta v Praze). Castrum Pragense 6 105–124 (in Czech English abstract).

  • Negri S. Leucci G. 2006: Geophysical investigation of the Temple of Apollo (Hierapolis Turkey). J. Archaeol. Sci. 33 11 1505–1513 doi: 10.1016/j.jas.2006.02.003.

  • Padín J. Martín A. Anquela A. B. 2012: Archaeological microgravimetric prospection inside don church (Valencia Spain). J. Archaeol. Sci. 39 2 547–554 doi: 10.1016/j.jas.2011.10.012.

  • Panisova J. Pašteka R. Papčo J. Fraštia M. 2012: The calculation of building corrections in microgravity surveys using close range photogrammetry. Near Surf. Geophys. 10 5 391–399 doi: 10.3997/1873-0604.2012034.

  • Panisova J. Fraštia M. Wunderlich T. Pašteka R. Kušnirák D. 2013: Microgravity and Ground-penetrating Radar Investigations of Subsurface Features at the St. Catherine’s Monastery Slovakia. Archaeol. Prospect. 20 3 163–174 doi: 10.1002/arp.1450.

  • Panisova J. Murín I. Pašteka R. Haličková J. Brunčák P. Pohánka V. Papčo J. Milo P. 2016: Geophysical fingerprints of shallow cultural structures from micro-gravity and GPR measurements in the Church of St. George Svaty Jur Slovakia. J. Appl. Geophys. 127 (April) 102–111 doi: 10.1016/j.jappgeo.2016.02.009.

  • Pašteka R. Zahorec P. 2000: Interpretation of microgravimetrical anomalies in the region of the former church of St. Catherine Dechtice. Contrib. Geophys. Geod. 304 373–387.

  • Pašteka R. Terray M. Hajach M. Pašiaková M. 2007: Microgravity measurements and GPR technique in the search for medieval crypts: a case study from the St. Nicholas church in Trnava SW Slovakia. Proceedings of the Archaeological Prospection 7th conference in NitraŠtúdijné zvesti 41 222–224.

  • Pašteka R. Richter F. P. Karcol R. Brazda K. Hajach M. 2009: Regularized derivatives of potential fields and their role in semi-automated interpretation methods. Geophys. Prospect. 57 4 507–516 doi: 10.1111/j.1365-2478.2008.00780.x.

  • Pašteka R. Karcol R. Pašiaková M. Pánisová J. Kušnirák D. Béreš J. 2011: Depth Estimation of Microgravity Anomalies Sources by Means of Regularized Downward Continuation and Euler Deconvolution. Proceedings from the 73rd EAGE Conference & Exhibition Vienna Austria 23–26 May 2011 5 p. doi: 10.3997/2214-4609.20149399.

  • Potent modelling software Geophysical Software Solutions User’s guide version v4.16.07 Manuscript online accessed 2019-11-17 available from: http://www.geoss.com.au/downloads.html.

  • Putiška R. Nikolaj M. Dostál I. Kušnirák D. 2012: Determination of cavities using electrical resistivity tomography. Contrib. Geophys. Geod. 42 2 201–211 doi: 10.2478/v10126-012-0018-3.

  • Reid A. B. Allsop J. M. Granser H. Millet A. J. Somerton I. W. 1990: Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55 1 80–91 doi: 10.1190/1.1442774.

  • Sandmeier K. J. 2019: ReflexW Vers. 9 Manual. SandmeierGeo Karlsruhe Manuscript online accessed 2019-11-18 available from: https://www.sandmeier-geo.de/download.html.

  • Sarlak B. Aghajani H. 2017: Archaeological investigations at Tepe Hissar-Damghan using Gravity and Magnetics methods. J. Res. Archaeom. 2 2 19–34 doi: 10.29252/jra.2.2.19.

  • Slepak Z. 1997: Complex geophysical investigations for studying the cultural layer and remains of ancient buildings in the territory of Kazan Kremlin Kazan Republic of Tatarstan Russia. Archaeol. Prospect. 4 4 207–218 doi: 10.1002/(SICI)1099-0763(199712)4:4<207::AID-ARP83>3.0.CO;2-L.

  • Zieliński A. Łyskowski M. Mazurkiewicz E. Lubarska K. W. 2019: Burial crypts in solid rock – a geophysical case study of a small church with a unique polychrome in Szydłów (S Poland). Geol. Geophys. Env. 45 2 89–97 doi: 10.7494/geol.2019.45.2.89.

Suche
Zeitschrifteninformation
Impact Factor


CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Metriken
Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 47 47 13
PDF Downloads 63 63 16