Review on the role of geoelectrical surveys in characterizing and deriving the constraints and hydrogeological conditions in semi arid Khanasser Valley region in Syria

Open access


This paper is a general review which basically focuses on the role of geoelectrical surveys in characterizing and deriving the constraints and hydrogeological conditions in semi arid Khanasser valley region and its surroundings in Northern Syria. Schlumberger configuration has been used to carry out ninety six vertical electrical soundings VES, distributed on nine transverse and three longitudinal profiles. Their quantitative 1D interpretations with different techniques yield to develop several alternative approaches, that enable us to derive and determine the hydrological parameters of the structures controlled by the groundwater distributions. Two different northern and southern geological structures separated by Hobs-Serdah water divided line were electrically characterized. Both of them are of very conductive zones of a resistivity less than 4 Ωm, and related to the intrusion of salty water in Quaternary and Paleogene aquifers. The qualitative interpretation of the iso-apparent resistivity maps for different AB/2 spacings has allowed the delineation of those two structures. Those two identified structures have their evident influences on the distributions of thicknesses, resistivity, salinity, hydraulic conductivity, and transmissivity of both Quaternary and Paleogene aquifers. The high resistivity exceeding 300 Ωm on the measured VES is a very good signal of the presence of basalt formation of upper Miocene age in Jebel Al Hass in the west and Jebel Shbith in the east. The geometry and the electrical characteristics of Quaternary and Paleogene aquifers and the top of Maestrichtian have been well recognized. Quaternary paleosabkhas, fractured zones and tectonic features of the subsurface of Khanasser valley have been delineated through analyzing VES distributions along the executed longitudinal and transverse profiles. Different empirical relationships have been already established through coupling geoelectrical resistivity and hydrochemical data, which allows to derive and establish different salinity maps for different AB/2 spacings, and to outline the boundaries between fresh, brackish and saline waters. Two different alternative approaches have been also developed for geophysically computing and estimating the hydraulic conductivity and the transmissivity of the aquifers in the study region. The different hydrogeophysical approaches developed in this integrated geophysical research project for water resource management have been successfully applied in Khanasser valley, and can be recommended to be practiced in similar worldwide areas.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ACSAD 1984: Water Resources Map of the Arab Countries The Arab Center for the Studies of Arid Zones and Dry Lands Damascus Syria.

  • Arétouyap Z. Nouayou R. Njandjock Nouck P. Asfahani J. 2015: Aquifers productivity in the Pan-African context. Journal of Earth System Science 124 3 527–539.

  • Arétouyap Z. Njandjock Nouck P. Nouayou R. Assatse W. T. Asfahani J. 2017: Aquifer porosity in the Pan-African semi-arid context. Environ. Earth Sci. 76 3 134 doi: 10.1007/s12665-017-6440-0.

  • Arétouyap Z. Bisso D. Njandjock Nouck P. Amougou Menkpa L. E. Asfahani J. 2018: Hydrogeophysical Characteristics of Pan-African Aquifer Specified Through an Alternative Approach Based on the Interpretation of Vertical Electrical Sounding Data in the Adamawa Region Central Africa. Natural Resources Research 28 1 63–77

  • Asfahani J. 2007a: Neogene aquifer properties specified through the interpretation of electrical sounding data Sallamiyeh region central Syria. Hydrol. Process 21 2934–2943 doi: 10.1002/hyp.6510.

  • Asfahani J. 2007b: Geoelectrical investigation for characterizing the hydrogeological conditions in semi-arid region in Khanasser valley Syria. J. Arid. Environ. 68 31–52 doi: 10.1016/j.jaridenv.2006.03.028.

  • Asfahani J. 2007c: Electrical earth resistivity surveying for delineating the characteristics of ground water in semi arid region in Khanaser Valley Northern Syria. Hydrol. Process 21 1085–1097 doi: 10.1002/hyp.6290.

  • Asfahani J. Radwan Y. 2007: Tectonic Evolution and Hydrogeological Characteristics of Khanasser Valley Northern Syria Derived from the Interpretation of Vertical Electrical Soundings. Pure Appl. Geophys. 164 2291–2311 doi: 10.1007/s00024-007-0274-8.

  • Asfahani J. 2010a: Application of surfacial geoelectrical resistivity technique in hydrogeology domain for characterizing saline groundwater in semi arid regions. In: Benjamin Veress Jozsi Szigethy (Eds.) Horizons in earth science research series. NOVA Science Publishers New York 1 351–381.

  • Asfahani J. 2010b: Electrresistivity investigations for guiding and controlling fresh water well drilling in semi arid region in Khanasser Valley Northern Syria. Acta Geophys. 59 1 139–154 doi: 10.2478/s11600-010-0031-8.

  • Asfahani J. 2012: Quaternary aquifer transmissivity in semi arid region in Khanasser valley Northern Syria. Acta Geophys. 60 4 1143–1158 doi: 10.2478/s11600-012-0016-x.

  • Asfahani J. 2013: Groundwater potential estimation deduced from vertical electrical sounding measurements in the semi-arid Khanasser valley region Syria. Hydrol. Sci. J. 58 2 468–482 doi: 10.1080/02626667.2012.751109.

  • Asfahani J. Abou Zakhem B. 2013: Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser valley northern Syria. Acta Geophys. 61 2 422–444 doi: 10.2478/s11600-012-0071-3.

  • Asfahani J. 2016: Hydraulic parameters estimation by using an approach based on vertical electrical soundings (VES) in the semi-arid Khanasser valley region Syria. J. Afr. Earth. Sci. 117 196–206 doi: 10.1016/j.jafrearsci.2016.01.018.

  • Attwa M. Günther T. Grinat M. Binot F. 2009: Transmissivity estimation from sounding data of Holocene tidal flat deposits in the north eastern part of Cuxhaven Germany. Extended abstracts Near Surface 2009: 15th European Meeting of Environmental and Engineering Geophysics Dublin Ireland 7–9 September 2009 P29 (Sub ID: 6710).

  • Bear J. 1972: Dynamics of fluids in porous media. Elsevier New York.

  • Chandra S. Ahmed S. Ram A. Dewandel B. 2008: Estimation of hard rock aquifer hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J. Hydrol. 357 218–227 doi: 10.1016/j.jhydrol.2008.05.023.

  • Chandra S. Dewandel B. Dutta S. Ahmed S. 2010: Geophysical model of geological discontinuities in a granitic aquifer: analyzing small-scale variability of electrical resistivity for groundwater occurrences. J. Arid. Geophys. 71 4 137–148 doi: 10.1016/j.jappgeo.2010.06.003.

  • Dobrin M. B. 1976: Introduction to Geophysical Prospecting. McGraw-Hill New York.

  • Eleraki M. Gadallah M. Gemail K. Attwa M. 2010: Application of resistivity method in environmental study of the appearance of soil water in the central part of Tenth of Ramadan City Egypt. Q. J. Eng. Geol. Hydrol. 43 171–184.

  • Heigold P. C. Gilkeson R. H. Cartwright K. Reed P. C. 1979: Aquifer transmissivity from sacrificial electrical methods. Ground Water 17 4 338–345.

  • Hoogeveen R. J. A. Zobisch M. 1999: Decline of groundwater quality in Khanasser valley (Syria) due to saltwater intrusion. Paper presented at the International Dryland Conference Cairo Egypt August 16 pp.

  • Jaworska-Szule B. 2009: Groundwater flow modelling of multi aquifer systems for regional resources evaluation: The Gdansk hydrogeological system Poland. Hydrogeology Journal 17 1521–1542.

  • Kazakis N. Vargemezis G. Voudouris K. 2016: Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods. Sci. Total Environ. 550 742–750.

  • Kelly W. E. 1977: Geoelectrical sounding for predicting aquifer properties. Ground Water 15 420–425.

  • Khalil M. H. 2012: Reconnaissance of freshwater conditions in a coastal aquifer: synthesis of 1D geoelectric resistivity inversion and geohydrological analysis. Near Surf. Geophys. 10 427–441.

  • Massoud U. El Qady G. Metwaly M. Santos F. 2009: Delineation of shallow subsurface structure by azimuthal resistivity sounding and joint inversion of VES TEM data: case study near Lake Qaroun El Fayoum Egypt. Pure and Applied Geophysics 166 701–719.

  • Massoud U. Santos F. M. Khalil M. A. Taha A. Abbas M. A. 2010: Estimation of aquifer hydraulic parameters from surface geophysical measurements: a case study of the Upper Cretaceous aquifer central Sinai. Egypt Hydro. J. 18 699–710.

  • Metwaly M. Elawadi E. Moustafal S. S. R. Al Fouzan F. Mogren S. Al Arifi N. 2012: Groundwater exploration using geoelectrical resistivity technique at Al-Quwy’yia area central Saudi Arabia. Int. J. Phys. Sci. 7 2 317–326.

  • Niwas S. Singhal D. C. 1981: Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. J. Hydrol. 50 393–399.

  • Niwas S. Singhal D. C. 1985: Aquifer transmissivity of porous media from resistivity data. J. Hydrol. 82 143–153.

  • Niwas S. Tezkan B. Israil M. 2011: Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site Germany. Hydrogeol. J. 19 307–315.

  • Niwas S. Celik M. 2012: Equation estimation of porosity and hydraulic conductivity of Ruhrtal aquifer in Germany using near surface geophysics. J. Appl. Geophys. 84 77–85.

  • Orellana E. Mooney H. M. 1966: Master tables and curves for vertical electrical sounding over layered structures interciencia Madrid Spain.

  • Pichgin N. I. Habibullaev I. K. H. 1985: Methodological recommendations in studying geo-tectonic conditions of vertical electrical soundings data with application of EC computer for solving hydrogeological and geoengineering problems. Tashkend (in Russian).

  • Ponikarov V. P. 1964: The Geological Map of Syria 1:200000 and Explanatory Notes. Syrian Arab Republic Ministry of Industry Department of Geological and Mineral Research Damascus Syria.

  • Purvance D. Andricevic R. 2000: Geoelectrical characterization of the hydraulic conductivity field and its spatial structure at variable scales. Water Resour. Res. 36 10 2915–2924.

  • Skinner D. Heinson G. 2004: A comparison of electrical and electromagnetic methods for the detection of hydraulic pathways in a fractured rock aquifer Clare Valley South Australia. Hydrogeol. J. 2. 576–590.

  • Soumi G. 1991: Supplemental Irrigation Systems of the Syrian Arab Republic (SAR). In: Proceeding of the Workshop on Regional Consultation on Supplemental Irrigation. ICARDA and FAO 7–9 December 1987 Rabat Morocco. Kluwer Academic Publishers Dordrecht The Netherlands pp. 497–511.

  • Soupios P. Kouli M. Vallianatos F. Vafidis A. Stavroulakis G. 2007: Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis Basin in Crete. J. Hydrol. 338 122–131.

  • Takhur J. K. 2016: Hydrogeological modelling for improving groundwater monitoring network and strategies. Applied Water Sciences 1–18.

  • Taylor R. W. Fleming A. H. 1988: Characterizing jointed systems by azimuthal resistivity surveys. Ground Water 26 464–474.

  • Tizro A. T. Kostantanous S. Voudouris K. Salehzade M. Mashayekhi H. 2010: Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: a case study from West Iran. Hydrogeology Journal 18 917–929.

  • Tizro A. T. Voudouris K. Basami Y. 2012: Estimation of porosity and specific yield by application of geoelectrical method – A case study in western Iran. Journal of Hydrology 454–455 160–172.

  • Wolfahrt R. 1966: Zur Hydrologie vor Syrien. Bundesanstalt für Bodenforschung und den Geologischen Landesämtern der Bundesrepublik Deutschland (in German).

  • Wolfahrt R. 1967: Geologie von Syrien und Lebanon Gebrüder Bornträger Berlin-Nikolasee (in German).

  • Zohdy A. A. R. 1989: A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics 54 245–253.

  • Zohdy A. A. R. Bisdorf R. J. 1989: Schlumberger Sounding Data Processing and Interpretation Program US Geological Survey Denver.

Journal information
Impact Factor

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 143 11
PDF Downloads 132 132 12