Refined prediction of vertical gradient of gravity at Etna volcano gravity network (Italy)

Open access


Predicted values of the vertical gradient of gravity (VGG) on benchmarks of Etna’s monitoring system, based on calculation of the topographic contribution to the theoretical free-air gradient, are compared with VGG values observed in situ. The verification campaign indicated that improvements are required when predicting the VGGs at such networks. Our work identified the following factors to be resolved: (a) accuracy of the benchmark position; (b) gravitational effect of buildings and roadside walls adjacent to benchmarks; (c) accuracy of the digital elevation model (DEM) in the proximity of benchmarks. Benchmark positions were refined using precise geodetic methods. The gravitational effects of the benchmark-adjacent walls and buildings were modeled and accounted for in the prediction. New high-resolution DEMs were produced in the innermost zone at some benchmarks based on drone-flown photogrammetry to improve the VGG prediction at those benchmarks. The three described refinements in the VGG prediction improved the match between predicted and in situ observed VGGs at the network considerably. The standard deviation of differences between the measured and predicted VGG values decreased from 36 to 13 μGal/m.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Battaglia M. Gottsmann J. Carbone D. Fernández J. 2008: 4D volcano gravimetry. Geophysics 73 6 WA3–WA18 doi: 10.1190/1.2977792.

  • Bisson M. Spinetti C. Neri M. Bonforte A. 2015: Mt. Etna volcano high-resolution topography: airborne LiDAR modelling validated by GPS data. International Journal of Digital Earth doi: 10.1080/17538947.2015.1119208.

  • Bonforte A. Carbone D. Greco F. Palano M. 2007: Intrusive mechanism of the 2002 NE-rift eruption at Mt. Etna (Italy) modelled using GPS and gravity data. Geophys. J. Int. 169 339–347 doi: 10.1111/j.1365-246X.2006.03249.x.

  • Bonforte A. Fanizza G. Greco F. Matera A. Sulpizio R. 2017: Long-term dynamics across a volcanic rift: 21 years of microgravity and GPS observations on the southern flank of Mt. Etna volcano. J. Volcanol. Geotherm. Res. 344 174–184.

  • Branca S. Coltelli M. Groppelli G. Lentini F. 2011: Geological map of Etna volcano 1:50000 scale. Ital. J. Geosci. (Boll. Soc. Geol. It.) 130 3 265–291 doi: 10.3301/IJG.2011.15.

  • Budetta G. Grimaldi M. Luongo G. 1989: Variazioni di gravit’a nell’area etnea (1986– 1989). Boll. GNV 5 137–146 (in Italian).

  • Carbone D. Greco F. 2007: Review of Microgravity Observations at Mt. Etna: A powerful Tool to Monitor and Study Active Volcanos. Pure Appl. Geophys. 164 769–790 doi: 10.1007/s00024-007-0194-7.

  • Carbone D. Poland M. P. Diament M. Greco F. 2017: The added value of time-variable microgravimetry to the understanding of how volcanoes work. Earth-Science Reviews 169 146–179 doi: 10.1016/j.earscirev.2017.04.014.

  • Fernández J. Pepe A. Poland M. P. Sigmundsson F. 2017: Volcano Geodesy: Recent developments and future challenges. J. Volcanol. Geotherm. Res. 344 1–12.

  • Greco F. Currenti G. D’Agostino G. Germak A. Napoli R. Pistorio A. Del Negro C. 2012: Combining relative and absolute gravity measurements to enhance volcano monitoring. Bull. Volcanol. 74 1745–1756.

  • Jarvis A. Reuter H. I. Nelson A. Guevara E. 2008: Hole-filled SRTM for the globe Version 4 available from the CGIAR-CSI SRTM 90m Database:

  • Maucourant S. Giammanco S. Greco F. Dorizon S. Del Negro C. 2014: Geophysical and geochemical methods applied to investigate fissures-related hydrothermal systems on the summit area of Mt. Etna volcano. J. Volcanol. Geotherm. Res. 280 111–125 doi: 10.1016/j.jvolgeores.2014.05.014.

  • Olson Ch. J. Becker J. J. Sandwell D. T. 2016: SRTM15 PLUS: Data fusion of Shuttle Radar Topography Mission (SRTM) land topography with measured and estimated seafloor topography (NCEI Accession 0150537). Version 1.1. NOAA National Centers for Environmental Information.

  • Palano M. Rossi M. Cannavò F. Bruno V. Aloisi M. Pellegrino D. Pulvirenti M. Siligato G. Matiia M. 2010: Etn@ref: a geodetic reference frame for Mt. Etna GPS networks. Annals of Geophysics 53 4 doi: 10.4401/ag-4879.

  • Pavlis N. K. Holmes S. A. Kenyon S. C. Factor J. K. 2012: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth 117 B04406:

  • Potent v.4.11.06 2010: User guide. Manuscript Geophysical Software Solutions Pty. Ltd. Gungahlin Australia.

  • Schiavone D. Loddo M. 2007: 3-D density model of Mt. Etna Volcano (Southern Italy). Journal of Volcanology and Geothermal Research 164 161–175.

  • Vajda P. Zahorec P. Papčo J. Kubová A. 2015: Deformation induced topographic effects in inversion of temporal gravity changes. Contributions to Geophysics and Geodesy 45 2 149–171.

  • Zahorec P. Papčo J. Mikolaj M. Pašteka R. Szalaiová V. 2014: The role of near topography and building effects in vertical gravity gradients approximation. First Break 32 1 65–71.

  • Zahorec P. Vajda P. Papčo J. Sainz-Maza S. Pereda de Pablo J. 2016: Prediction of vertical gradient of gravity and its significanse for volcano monitoring – example from Teide volcano. Contributions to Geophysics and Geodesy 46 3 203–220.

  • Zahorec P. Marušiak I. Mikuška J. Pašteka R. Papčo J. 2017: Numerical Calculation of Terrain Correction Within the Boguer Anomaly Evaluation (Program Toposk) chapter 5 79–92 In book: Roman Pašteka Ján Mikuška and Bruno Meurers (Eds.): Understanding the Bouguer Anomaly: A Gravimetry Puzzle Elsevier ISBN 978-0-12-812913-5 doi: 10.1016/B978-0-12-812913-5.00006-3.

Journal information
Impact Factor

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 1
PDF Downloads 145 145 1