Detection of future changes in trends and scaling exponents in extreme short-term rainfall at selected stations in Slovakia

Open access

Abstract

This paper analyses projected changes in short-term rainfall events during the warm season (April – October) in an ensemble of 30 regional climate model (RCM) simulations. The analysis of trend changes and changes in scaling exponents was done for the Hurbanovo, Bratislava, Oravská Lesná, and Myjava stations in Slovakia. The characteristics of maximum rainfall events were analysed for two scenario periods, one past and one future (1960–2000 and 2070–2100) and compared to the characteristics of the actual observed events. The main findings from the analysis show that 60-min short-term events for most of the RCM simulations will either increase or remain constant. On the other hand, the depths and intensities of daily events are projected to increase significantly; in some cases they were found to be ten times larger. Trends in future events at the Hurbanovo station were found to be insignificant. In the other stations positive trends in future rainfall events prevail, except for daily rainfall at the Myjava station, which shows a negative trend. Using results from the selected simulations, the scaling exponents estimated are on average lower than the exponents of the data observed. On the other hand, due to the higher daily precipitation amounts in the future seen to all the scenarios, the downscaled values of short-term rainfall at all the stations analysed might be considerably higher in the future horizons, which could subsequently affect future design rainfall values for engineering designs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bara M. Kohnova S. Gaal L. Szolgay J. Hlavcova K. 2009: Estimation of IDF curves of extreme rainfall by simple scaling in Slovakia. Contributions to Geophysics and Geodesy 39 3 187–206.

  • Collins M. Booth B. Bhaskaran B. Harris G. Murphy J. Sexton D. Webb M. 2011: Climate model errors feed-backs and forcings: a comparison of perturbed physics and multi-model ensembles. Clim. Dynam. 36 9–10 1737–1766 doi: 10.1007/s00382-010-0808-0.

  • Cox D. R. Stuart A. 1955: Some quick sign tests for trend in location and dispersion. Biometrika 42 80–95.

  • Foley A. M. 2010: Uncertainty in regional climate modelling: A review Progress in Physical Geography 34 5 647–670 24p.

  • Gupta V. K. Waymire E. C. 1990: Multiscaling properties of spatial and river flow distributions. Journal of Geophysical Research 95 D3 1999–2009.

  • Hamed K. H. Rao A. R. 1998: A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204 182–196.

  • Hlavcova K. Lapin M. Valent P. Szolgay J. Kohnova S. Roncak P. 2015: Estimation of the impact of climate change-induced extreme precipitation events on floods. Contributions to Geophysics and Geodesy 45 3 173–192.

  • IPCC-TGICA 2007: “General Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 2”. Prepared by T. R. Carter on behalf of the Intergovernmental Panel on Climate Change Task Group on Data and Scenario Support for Impact and Climate Assessment http://www.ipcc-data.org/guidelines/TGICA_guidance_sdciaa_v2_final.pdf.

  • Jacob D. Petersen J. Eggert B. Alias A. Christensen O. B. Bouwer L. M. Braun A. Colette A. Déqué M. Georgievski G. Georgopoulou E. Gobiet A. Menut L. Nikulin G. Haensler A. Hempelmann N. Jones C. Keuler K. Kovats S. Kröner N. Kotlarski S. Kriegsmann A. Martin E. van Meijgaard E. Moseley C. Pfeifer S. Preuschmann S. Radermacher C. Radtke K. Rechid D Rounsevell M. Samuelsson P. Somot S. Soussana J. F. Teichmann C. Valentini R. Vautard R. Weber B. Yiou P. 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change 14 2 563–578 doi: 10.1007/s10113-013-0499-2.

  • Kendall M. G. 1955: Rank Correlation Methods. Griffin London.

  • Kendon E. J. Roberts N. M. Fowler H. J. Roberts M. J. Chan S. C. Senior C. A. 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4 7 570–576.

  • Koutsoyiannis D. Foufoula-Georgiu E. 1993: A scaling model of storm hyetograph. Water Resour. Res. 29 7 2345–2361.

  • Kupiainen M. Jansson C. Samuelsson P. Jones C. Willén U. Hansson U. Ullerstig A. Wang S. Döscher R. 2014: Rossby Centre regional atmospheric model RCA4 Rossby Center News Letter Rossby Centre regional atmospheric model RCA4.

  • Lovejoy S. Schertzer D. 1995: Multifractals and rain. In: Kundzewicz Z. W. (Ed.): New uncertainty concepts in hydrology and water resources. UNESCO Series in Water Sciences Cambridge University Press New York.

  • Madsen H. Lawrence D. Lang M. Kjeldsen T. R. 2014: Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. Journal of Hydrology 519 3634–3650.

  • Mann H. B. 1945: Nonparametric tests against trend. Econometrica 13 245–259.

  • Menabde M. Seed A. Pegram G. 1999: A simple scaling model for extreme rainfall. Water Resour. Res. 35 1 335–339.

  • Molnar P. Burlando P. 2008: Variability in the scaling properties of high-resolution precipitation data in the Alpine climate of Switzerland. Water Resources Research 44 W10404 doi: 10.1029/2007WR006142.

  • Rummukainen M. 2010: State-of-the-art with regional climate models. Wiley Interdisciplinary Reviews: Climate Change 1 1 82–96.

  • Samuelsson P. Jones C. Willen U. Ullerstig A. and co-authors 2011: The Rossby Centre Regional Climate model RCAS3: model description and performance Tellus 63A 4–23.

  • van der Linden P. Mitchell J. F. B. (Eds.) 2009: ENSEMLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met. Office Hadley Centre Exeter UK 160 p.

  • van Meijgaard E. van Ulft L. H. van de Berg W. J. Bosveld F. C. van den Hurk B. J. J. M. Lenderink G. Siebesma A. P. 2008: The KNMI regional atmospheric climate model RACMO version 2.1. Koninklijk Nederlands Meteorologisch Instituut.

  • van Meijgaard E. van Ulft L. H. Lenderink G. de Roode S. Wipfler L. Boers R. Timmermans R. M. A. 2012: Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe. Tech. rep. KNMI De Bilt The Netherlands climate changes Spatial Planning publication: KvR 054/12.

  • Vasilaki M. Kohnová S. Hanel M. Szolgay J. Hlavčová K. Loukas A. Rončák P. 2017: Detection of future changes in seasonality in extreme short-term rainfall in selected stations of Slovakia. Contributions to Geophysics and Geodesy 47 2 133–148 ISSN 1335-2806.

  • Veneziano D. Furcolo P. 2002: Multifractality of rainfall and scaling of intensity-duration-frequency curves. Water Resources Research 38 12 1306 doi: 10.1029/2001WR 000372.

  • Yu P.-S. Yang T.-C. Lin C.-S. 2004: Regional rainfall intensity formulas based on scaling property of rainfall. J. Hydrol. 295 1-4 108–123.

Search
Journal information
Impact Factor


CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 120 15
PDF Downloads 113 113 14