Long-term development and prediction of climate extremity and heat waves occurrence: Case study for agricultural land

Open access


According to the IPCC it is possible to predict larger weather extremity associated with more frequent occurrence of heat waves. These waves have an impact not only on the health status of the population, on economic, social and environmental spheres, but also on agricultural landscape and production. The paper deals with the issue of climate extremity and addresses mainly the occurrence of characteristic days (tropical, summer, freezing, ice and arctic) and heat waves. The south-eastern Moravia belongs to the warmest regions of the Czech Republic. Since the area is not urban, it is not affected by urban heat islands. Thus, it can be used as a representative area of climate change in terms of weather extremes. Heat wave occurrence and length analysis was performed for the period of 1931–1960 and 1961–2013. In addition, a prospective analysis was carried out for the period of 2021–2100 where the scenario data of the Czech Hydrometeorological Institute were used. Between 1961 and 1990, heat waves appeared from June to September. The prediction for the next two decades shows that heat waves may appear as early as May. Furthermore, the average count of days in heat waves increased from 6.13 days (1961–1990) to 36 days (2071–2100). A statistically significant increase in the annual number of tropical days (from 9 to 20 days) was found in the assessment of characteristic days for the period 1961–2013. A highly conspicuous trend was found in July and a prominent trend was identified in May. A statistically highly significant trend was also observed in the annual number of summer days.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Beniston M. Stoffel M. Guillet S. 2016: Comparing observed and hypothetical climates as a means of communicating to the public and policymakers: The case of European heatwaves. Environmental Science and Policy 67 27–37.

  • Ciais Ph. Reichstein M. Viovy N. Granier A. Ogée J. Allard V. Aubinet M. Buchmann N. Bernhofer Chr. Carrara A. Chevallier F. De Noblet N. Friend A. D. Friedlingstein P. Grünwald T. Heinesch B. Keronen P. Knohl A. Krinner G. Loustau D. Manca G. Matteucci G. Miglietta F. Ourcival J. M. Papale D. Pilegaard K. Rambal S. Seufert G. Soussana J. F. Sanz M. J. Schulze E. D. Vesala T. Valentini R. 2005: Europe-wide reduction in the primary productivity caused by the heat and drought in 2003. Nature 437 529–533.

  • Déqué M. 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global and Planetary Change 57 16–26.

  • Frich P. Alexander L. V. Della-Marta P. Gleason B. Haylock M. Klein Tank A. M. G. Peterson T. 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research 19 193–212.

  • Hunt A. Ferguson J. Baccini M. Watkiss P. Kendrovski V. 2016: Climate and weather service provision: Economic appraisal of adaptation to health impacts. Climate services 7 78–86.

  • Hupfer P. Tinz B. Freydank E. 2009: Climate change and medicine: frequency and intensity of heat waves in Germany. Umweltmedizin in Forschung und Praxis Ecomed Medizin Landsberg 14 71–78.

  • IPCC 2013: Climate Change 2013 The Physical Science Basis Working Group I Contribution to the fifth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers.

  • Kurpelová M. Coufal L.Čulík J. 1975: Agroclimatic conditions in CSSR (Agroklimatické podmienky ČSSR). Praha: Hydrometeorologický ústav 270 p. (in Slovak).

  • Kyselý J. Beranová R. Picek J.Štěpánek P. 2008: Simulation of summer temperature extremes over the Czech Republic in regional climate models. Meteorologische Zeitschrift 17 645–661.

  • Kyselý J. Huth R. 2004: Mortality associated with heat stress in the Czech Republic in the current and future climate. Meteorologickézprávy 57 113–121 (in Czech).

  • McGregor G. R. Pelling M. Wolf T. Gosling S. N. 2007: The social impacts of heat waves. Environment Agency Bristol 41 p.

  • Mužíková B. Vlček V. Středa T. 2011: Tendencies of climatic extremes occurrence in different Moravian regions and landscape types. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 59 169–178.

  • Patz J. A. Campbell-Lendrum D. Holloway T. Foley J. A. 2005: Impact of regional climate change on human health. Nature 438 310–317.

  • Peel M. C. Finlayson B. L. Mcmahon T. A. 2007: Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions European Geosciences Union 11 1633–1644.

  • Russo S. Dosio A. Graversen R. G. Sillmann J. Carrao H. Dunbar M. B. Singleton A. Montagna P. Barbola P. Vogt J. V. 2014: Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research Atmospheres 119 12500–12512.

  • Smith K. R. Woodward A. 2014: Human health: impacts adaptation and co-benefits. In: Field C.B et al. (eds.) Climate Change 2014: Impacts Adaptation and Vulnerability. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change 709–754.

  • Sobíšek B. Bednář J.Černava S. Flux J. Fruhbauer J. Gottwald A. Hodan L. Jurčovič P. Kakos V. Kalvová J. Koldovský M. Kopáček J. Krejčí J. Krška K. Munzar J. Nedelka M. Otruba A. Panenka I. Papež A. sen. Pícha J. Podhorský D. Popolanský F. Pretel J. Pribiš J. Rein F. Setvák M. Schoberová E. Slabá N. Sládek I. Strachota J. Štekl J. Táborsk Z. Trefná E. Trhlík M. Vesecký A. Zeman M. Zikmunda O. 1993: Meteorological vocabulary (Meteorologický slovník výkladový a terminologický). Praha Academia 594 p. (in Czech).

  • Středa T. Vahala O. Středová H. 2013: Prediction of adult western corn rootworm (Diabrotica virgifera virgifera LeConte) emergence. Plant Protection Science 49 89–97.

  • Středová H. Fukalová P. Rožnovský J. 2010: Specific of temperature extremes under the conditions of urban climate. Contributions to Geophysics and Geodesy 40 249–261.

  • Štěpánek P. 2007: ProClimDB – software for processing climatological datasets. CHMI Regional office Brno online [cit. 2009-01-23] available online: http://www.climahom.eu/ProcData.html.

  • Štěpánek P. Skalák P. Farda A. 2008: RCM ALADIN-Climate/CZ simulation of 2020–2050 climate over the Czech Republic. In: Bioklimatologické aspekty hodnocení procesů v krajině Mikulov 9.–11.9.2008 11 p.

  • Tolasz R. et al. 2007: Climate Atlas of Czechia (Atlas podnebí Česka). Praha: Český hydrometeorologický ústav Olomouc: Univerzita Palackého v Olomouci 255 p. (in Czech).

Journal information
Impact Factor

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 199 58 1
PDF Downloads 102 44 0