Process-based selection of copula types for flood peak-volume relationships in Northwest Austria: a case study

Open access

Abstract

The case study aims at selecting optimal bivariate copula models of the relationships between flood peaks and flood volumes from a regional perspective with a particular focus on flood generation processes. Besides the traditional approach that deals with the annual maxima of flood events, the current analysis also includes all independent flood events. The target region is located in the northwest of Austria; it consists of 69 small and mid-sized catchments. On the basis of the hourly runoff data from the period 1976- 2007, independent flood events were identified and assigned to one of the following three types of flood categories: synoptic floods, flash floods and snowmelt floods. Flood events in the given catchment are considered independent when they originate from different synoptic situations. Nine commonly-used copula types were fitted to the flood peak - flood volume pairs at each site. In this step, two databases were used: i) a process-based selection of all the independent flood events (three data samples at each catchment) and ii) the annual maxima of the flood peaks and the respective flood volumes regardless of the flood processes (one data sample per catchment). The goodness-of-fit of the nine copula types was examined on a regional basis throughout all the catchments. It was concluded that (1) the copula models for the flood processes are discernible locally; (2) the Clayton copula provides an unacceptable performance for all three processes as well as in the case of the annual maxima; (3) the rejection of the other copula types depends on the flood type and the sample size; (4) there are differences in the copulas with the best fits: for synoptic and flash floods, the best performance is associated with the extreme value copulas; for snowmelt floods, the Frank copula fits the best; while in the case of the annual maxima, no firm conclusion could be made due to the number of copulas with similarly acceptable overall performances. The general conclusion from this case study is that treating flood processes separately is beneficial; however, the usually available sample size in such real life studies is not sufficient to give generally valid recommendations for engineering design tasks.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bačová-Mitková V. 2012: The relationship between volume of the flood wave and the time duration of flood events (Vzájomný vzt’ah objemu a dĺžky trvania povodňových vĺn). Acta Hydrologica Slovaca 13 1 165-174 (in Slovak).

  • Bačová-Mitková V. Halmová D. 2014: Joint modeling of flood peak discharges volume and duration: a case study of the Danube River in Bratislava. Journal of Hydrology and Hydromechanics 62 3 186-196 doi:

    • Crossref
    • Export Citation
  • Ben-Aissia M.-A. Chebana F. Ouarda T. B. M. J. Roy L. Desrochers G. Chartier I. Robichaud É. 2012: Multivariate analysis of flood characteristics in a climate change context of the watershed of the Baskatong reservoir Province of Québec Canada. Hydrological Processes 26 130-142 doi:

    • Crossref
    • Export Citation
  • Bezak N. Mikoš M. šraj M. 2014: Trivariate frequency analyses of peak discharge hydrograph volume and suspended sediment concentration data using copulas. Water Resources Management 28 8 2195-2212 doi:

    • Crossref
    • Export Citation
  • Chapman T. G. Maxwell A. I. 1996: Baseflow separation-comparison of numerical methods with tracer experiments. In: 23rd Hydrology and Water Resources Symposium: Water and the Environment Natl. Conf. Publ. 96/05 pp. 539-545. Inst. of Eng. Barton A.C.T. Australia.

  • Chowdhary H. Escobar L. A. Singh V. P. 2011: Identification of suitable copulas for bivariate frequency analysis of flood peak and flood volume data. Hydrology Research 42 2-3 193-216 doi:

    • Crossref
    • Export Citation
  • De Michele C. Salvadori G. Vezzoli R. Pecora S. 2013: Multivariate assessment of droughts: Frequency analysis and dynamic return period. Water Resources Research 49 6985-6994 doi:

    • Crossref
    • Export Citation
  • Favre A.-C. El Adlouni S. Perreault L. Thiémonge N. Bobée B. 2004: Multivariate hydrological frequency analysis using copulas. Water Resources Research 40 W01101 doi:

    • Crossref
    • Export Citation
  • Gaál L. Szolgay J. Kohnová S. Hlavčová K. Parajka J. Viglione A. Merz R. Blöschl G. 2014: Dependence between flood peaks and volumes - A case study on climate and hydrological controls. Hydrological Sciences Journal 60 6 968-984 doi:

    • Crossref
    • Export Citation
  • Gaál L. Szolgay J. Kohnová S. Parajka J. Merz R. Viglione A. Blöschl G. 2012: Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resources Research 48 4 W04511 doi:

    • Crossref
    • Export Citation
  • Gaál L. Szolgay J. Bacigál T. Kohnová S. Hlavčová K. Výleta R. Parajka J. Blöschl G. 2016: Regional analysis of similarity of empirical copulas of flood peak-volume relationships: a case study of North-West Austria. Contributions to Geodesy and Geophysics 46 3 155-178.

  • Ganguli P. Reddy M. J. 2013: Probabilistic assessment of flood risks using trivariate copulas. Theoretical and Applied Climatology 111 341-360 doi:

    • Crossref
    • Export Citation
  • Genest C. Favre A.-C. 2007: Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering 12 4 347-368 doi:

    • Crossref
    • Export Citation
  • Genest C. Favre A.-C. Béliveau J. Jacques C. 2007: Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research 43 W09401 doi:

    • Crossref
    • Export Citation
  • Genest C. Rémillard B. Beaudoin D. 2009: Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics 44 199-213 doi:

    • Crossref
    • Export Citation
  • Gonzales A. L. Nonner J. Heijkers J. Uhlenbrook S. 2009: Comparison of different base flow separation methods in a lowland catchment. Hydrology and Earth System Sciences 13 2055-2068 doi:

    • Crossref
    • Export Citation
  • Gyasi-Agyei Y. Melching C. S. 2012: Modelling the dependence and internal structure of storm events for continuous rainfall. Journal of Hydrology 464 249-261 doi:

    • Crossref
    • Export Citation
  • Kao S. Chang N. 2012: Copula-based flood frequency analysis at ungauged basin confluences: Nashville Tennessee. Journal of Hydrologic Engineering 17 7 790-799 doi:

    • Crossref
    • Export Citation
  • Karmakar S. Simonovic S. P. 2009: Bivariate flood frequency analysis. Part 2: A copula-based approach with mixed marginal distributions. Journal of Flood Risk Management 2 32-44 doi:

    • Crossref
    • Export Citation
  • Lee T. Modarres R. Ouarda T. B. M. J. 2013: Data-based analysis of bivariate copula tail dependence for drought duration and severity. Hydrological Processes 27 10 1454-1463 doi:

    • Crossref
    • Export Citation
  • Li L. Maier H. R. Partington D. Lambert M. F. Simmons C. T. 2014: Performance assessment and improvement of recursive digital baseflow filters for catchments with different physical characteristics and hydrological inputs. Environmental Modelling & Software 54 39-52 doi:

    • Crossref
    • Export Citation
  • Merz R. Blöschl G. 2003: A process typology of regional floods. Water Resources Research 39 12 1340 doi:

    • Crossref
    • Export Citation
  • Merz R. Blöschl G. 2009: A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resources Research 45 1 W01415 doi:

    • Crossref
    • Export Citation
  • Merz R. Blöschl G. Parajka J. 2006: Spatio-temporal variability of event runoff coefficients. Journal of Hydrology 331 3-4 591-604 doi:

    • Crossref
    • Export Citation
  • Nelsen R. B. 2006: An Introduction to Copulas. 2nd edition. Springer-Verlag New York.

  • Parajka J. Merz R. Blöschl G. 2007: Uncertainty and multiple objective calibration in regional water balance modelling - Case study in 320 Austrian catchments. Hydrological Processes 21 435-446 doi:

    • Crossref
    • Export Citation
  • Poulin A. Huard D. Favre A.-C. Pugin S. 2007: Importance of tail dependence in bivariate frequency analysis. Journal of Hydrologic Engineering 12 4 394-403 doi:

    • Crossref
    • Export Citation
  • Reddy M. J. Ganguli P. 2012: Bivariate flood frequency analysis of Upper Godavari River flows using Archimedean copulas. Water Resources Management 26 14 3995-4018 doi:

    • Crossref
    • Export Citation
  • Requena A. I. Mediero L. Garrote L. 2013: A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrology and Earth System Sciences 17 3023-3038 doi:

    • Crossref
    • Export Citation
  • Shiau J.-T. Wang H.-Y. Tsai C.-T. 2006: Bivariate flood frequency analysis of floods using copulas. Journal of the American Water Resources Association 42 6 1549-1564 doi:

    • Crossref
    • Export Citation
  • Sraj M. Bezak N. Brilly M. 2014: Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrological Processes 29 2 225-238 doi:

    • Crossref
    • Export Citation
  • Szolgay J. Gaál L. Kohnová S. Hlavčová K. Výleta R. Bacigál T. Blöschl G. 2015: A process-based analysis of the suitability of copula types for peak-volume flood relationships. Proceedings of IAHS 370 183-188 doi:

    • Crossref
    • Export Citation
  • Szolgay J. Gaál L. Bacigál T. Kohnová S. Hlavčová K. Výleta R. Blöschl G. 2016a: A regional look at the selection of a process-oriented model for flood peak/volume relationships. Proceedings of IAHS 373 61-69 doi:

    • Crossref
    • Export Citation
  • Szolgay J. Gaál L. Bacigál T. Kohnová S. Hlavčová K. Výleta R. Parajka J. Blöschl G. 2016b: A regional comparative analysis of empirical and theoretical flood peakvolume relationships. Journal of Hydrology and Hydromechanics 64 4 367-381 doi:

    • Crossref
    • Export Citation
  • Vandenberghe S. Verhoest N. E. C. Buyse E. De Baets B. 2010: A stochastic design rainfall generator based on copulas and mass curves. Hydrology and Earth System Sciences 14 2429-2442 doi:

    • Crossref
    • Export Citation
  • Waylen P. Woo M. 1982: Prediction of annual floods generated by mixed processes. Water Resources Research 18 4 1283-1286 doi:

    • Crossref
    • Export Citation
  • Werner P. C. Gerstengarbe F.-W. 2010: Catalogue of weather patterns in Europe (1881-2009): After Paul Hess and Helmut Brezowsky improved and supplemented edition (Katalog der Grosswetterlagen Europas (1881-2009) nach Paul Hess und Helmut Brezowsky 7. verbesserte und ergänzte Auflage). PIK-Report No. 119 Potsdam Institute for Climate Impact Research Potsdam 146 p. (in German).

  • Zhang L. Singh V. P. 2006: Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering 11 150-164 doi:

    • Crossref
    • Export Citation
  • Zhang L. Singh V. P. 2007: Trivariate flood frequency analysis using the Gumbel- Hougaard copula. Journal of Hydrologic Engineering 12 431-439 doi:

    • Crossref
    • Export Citation
Search
Journal information
Impact Factor


CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 107 2
PDF Downloads 184 134 5