Prediction of vertical gradient of gravity and its significance for volcano monitoring – example from Teide volcano

Open access


We present a detailed calculation of the topographic contribution to the vertical gradient of gravity (VGG) based on high-resolution digital elevation model (DEM) and new developed software (Toposk) for the purpose of predicting the actual VGGs in the field. The calculations presented here were performed for the Central Volcanic Complex (CVC) of Tenerife. We aimed at identifying the most extreme VGGs within the CVC, as well as predicting the VGGs at benchmarks of the former microgravity/deformation network set up to monitor the 2004/5 unrest. We have carried out an observational campaign in June 2016 to verify the predicted VGG values, both the extreme ones and those at the benchmarks. The comparison between the predicted and the in-situ verified VGGs is presented here. We demonstrate the sensitivity of the VGG prediction to the choice of the topo-rock density, which is inherent to the volcanic areas with high variability of rock densities. We illustrate the significance of the use of actual VGG in volcano monitoring microgravimetric surveys on a couple of benchmarks of the CVC network.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Becker J. J. Sandwell D. T. Smith W. H. F. Braud J. Binder B. Depner J. Fabre D. Factor J. Ingalls S. Kim S.-H. Ladner R. Marks K. Nelson S. Pharaoh A. Trimmer R. Von Rosenberg J. Wallace G. Weatherall P. 2009: Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30 PLUS. Marine Geodesy 32 4 355–371.

  • Berrino G. Rymer H. Brown G. C. Corrado C. 1992: Gravity-height correlations for unrest at calderas. J. Volcanol. Geotherm. Res. 53 11–26.

  • Gottsmann J. Wooller L. Martí J. Fernández J. Camacho A. G. Gonzalez P. García A. Rymer H. 2006: New evidence for the reawakening of Teide volcano. Geophys. Res.‘Lett. 33 L20311.

  • Gottsmann J. Battaglia M. 2008: Deciphering Causes of Unrest at Explosive Collapse Calderas: Recent Advances and Future Challenges of Joint Time-Lapse Gravimetric and Ground Deformation Studies. Developments in Volcanology 10 417–446.

  • Gottsmann J. Camacho A. G. Martí J. Wooller L. Fernández J. García A. Rymer H. 2008: Shallow strucure beneath the Central Volcanic Complex of Tenerife from new gravity data: Implications for its evolution and recent reactivation. Phys. Earth Planet. Int. 168 212–230.

  • IGN GNSS 2016:

  • Jarvis A. Reuter H. I. Nelson A. Guevara E. 2008: Hole-filled SRTM for the globe Version 4 available from the CGIAR-CSI SRTM 90m Database:

  • LAStools 2016: Efficient LiDAR Processing Software (version 160709):

  • Marušiak I. Zahorec P. Papčo J. Pašteka R. Mikuška J. 2013: Toposk program for the terrain correction calculation. G-trend s.r.o. Bratislava unpublished manual (in Slovak).

  • Pavlis N. K. Holmes S. A. Kenyon S. C. Factor J. K. 2012: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth 117 B04406:

  • Rymer H. 1994. Microgravity change as a precursor to volcanic activity. J. Volcanol. Geotherm. Res. 61 311–328.

  • Vajda P. Zahorec P. Papčo J. Kubová A. 2015: Deformation induced topographic effects in inversion of temporal gravity changes. Contributions to Geophysics and Geodesy 45 2 149–171.

  • Zahorec P. Papčo J. Mikolaj M. Pašteka R. Szalaiová V. 2014: The role of near topography and building effects in vertical gravity gradients approximation. First Break 32 1 65–71.

  • Zahorec P. Mikuška J. Papčo J. Marušiak I. Karcol R. Pašteka R. 2015: Towards the measurements of zero vertical gradient of gravity on the Earth’s surface. Stud. Geophys. Geod. 59 4 524–537.

Journal information
Impact Factor

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 199 4
PDF Downloads 155 120 3