Tectonic classification of vertical crustal motions – a case study for New Zealand

Open access

Abstract

We investigate the relationship between vertical crustal motion and tectonic block configuration. The study is conducted along the active tectonic margin between the Australian and Pacific tectonic plates in New Zealand with a well-defined tectonic block configuration. For this purpose, the rates of vertical crustal motions relative to the ITRF2008 reference frame are estimated based on processing the GPS data (provided by the GeoNET project) collected at 123 continuous and semi-continuous GPS sites. The numerical results confirmed the uplift of the central Southern Alps at the current rate of 4.5 mm/yr. This tectonic uplift is coupled in the South Island by the subsidence on both sides of the Southern Alps. The detected rates of subsidence in the eastern South Island are typically less than 1 mm/yr. The subsidence in the Buller Region (in the northwest South Island) is 1.4–1.5 mm/yr. Except for the Taupo Volcanic Zone and the upper Raukumara Block (in the central and northeast North Island), the subsidence is prevailing in the North Island. The systematic subsidence up to 9 mm/yr is detected along the Dextral Fault Belt (in the lower North Island). The largest localized vertical displacements (between −10 and 17 mm/yr) in the Taupo Volcanic Zone are attributed to active tectonics, volcanisms and geothermal processes in this region. A classification of these vertical tectonic motions with respect to the tectonic block configuration reveals that most of tectonic blocks are systematically uplifted, subsided or tilted, except for regions characterized by a complex pattern of vertical motions attributed to active geothermal and volcanic processes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Altamimi Z. Collilieux X. Metivier L. 2011: ITRF2008: an improved solution of the international terrestrial reference frame. J. Geod. 85 5 457–473 doi: 10.1007/s00190-011-0444-4.

  • Amiri-Simkooei A. R. Tiberius C. C. J. M. Teunissen P. J. G. 2007: Assessment of noise in GPS coordinate time series: methodology and results. J. Geophys. Res. 112 B07413 doi: 10.1029/2006JB004913.

  • Barnes P. M. Mercier de Lepinay B. 1997: Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin New Zealand. J. Geophys. Res. 102 B11 24931–24952 doi: 10.1029/97JB01384.

  • Bar-Sever Y. E. Kroger P. M. Borjesson J. A. 1998: Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J. Geophys. Res 103 B3 5019–5035.

  • Batt G. E. Braun J. 1999: The tectonic evolution of the Southern Alps New Zealand: insights from fully thermally coupled dynamical modelling. Geophys. J. Int. 136 2 403–420 doi: 10.1046/j.1365-246X.1999.00730.x.

  • Beanland S. 1995: The North Island dextral fault belt Hikurangi subduction margin New Zealand. Unpublished PhD thesis Victoria Univ. of Wellington Wellington New Zealand.

  • Beanland S. Haines J. 1998: The kinematics of active deformation in the North Island New Zealand determined from geological strain rates. N.Z. J. Geol. Geophys. 41 4 311–323 doi: 10.1080/00288306.1998.9514813.

  • Beavan J. Moore M. Pearson C. Henderson M. Parsons B. Bourne S. England P. Walcott D. Blick G. Darby D. Hodgkinson K. 1999: Crustal deformation during 1994–1998 due to oblique continental collision in the central Southern Alps New Zealand and implications for seismic potential of the Alpine Fault. J. Geophys. Res. 104 B11 25233–25255 doi: 10.1029/1999JB900198.

  • Beavan J. Haines J. 2001: Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand. J. Geophys. Res. 106 B1 741–770 doi: 10.1029/2000JB900302.

  • Beavan J. Tregoning P. Bevis M. Kato T. Meertens C. 2002: Motion and rigidity of the Pacific Plate and implications for plate boundary deformation. J. Geophys. Res. 107 B10 ETG19-1–ETG19-15 doi: 10.1029/2001JB000282.

  • Beavan J. Matheson D. Denys P. Denham M. Herring T. Hager B. Molnar P. 2004: A vertical deformation profile across the Southern Alps New Zealand from 3.5 years of continuous GPS data. In: Proceedings of Workshop The State of GPS Vertical Positioning Precision: Separation of Earth Processes by Space Geodesy Cahiers du Centre Européen de Geodynamique et de Sismologie 23 (Eds) van Dam T. Francis O. 111–123 Luxembourg 2004.

  • Beavan J. Blick G. 2005: Limitations in the NZGD2000 Deformation Model. In: Dynamic Planet International Association of Geodesy Symposia 624–630 doi: 10.1007/978-3-540-49350-1_90.

  • Beavan J. 2005: Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from US deep drilled braced monuments. J. Geophys. Res. 110 B08410 doi: 10.1029/2005JB003642.

  • Beavan J. Ellis S. Wallace L. Denys P. 2007: Kinematic constraints from GPS on oblique convergence of the Pacific and Australian Plates central South Island New Zealand. In: A Continental Plate Boundary: Tectonics at South Island New Zealand Okaya D. Stern T. Davey F. (Eds) Geophys. Monogr. Ser. 175 75–94 AGU Washington DC doi: 10.1029/175GM05.

  • Beavan J. Denys P. Denham M. Hager B. Herring T. Molnar P. 2010: Distribution of present-day vertical deformation across the Southern Alps New Zealand from 10 years of GPS data. Geophys. Res. Lett. 37 L16305 doi: 10.1029/2010GL044165.

  • Berryman K. R. Beanland S. Cooper A. F. Cutten H. N. Norris R. J. Wood P. R. 1992: The Alpine Fault New Zealand; variation in Quaternary structural style and geomorphic expression. Ann. Tectonicae (Supplement) 6 126–163.

  • Blick G. Crook C. Grant D. Beavan J. 2003: Implementation of a semi-dynamic datum for New Zealand. In: Sanso F. (Ed.) A Window on the Future of Geodesy. Springer-Verlag Berlin/Heidelberg 38–43 doi: 10.1007/3-540-27432-4_7.

  • Boehm J. Niell A. E. Tregoning P. Schuh H. 2006: The Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 33 7 L07304 doi: 10.1029/2005GL025546.

  • Bourne S. J. Arnadottir T. Beavan J. Darby D. J. England P. C. Parsons B. Walcott R. I. Wood P. R. 1998: Crustal deformation of the Marlborough fault zone in the South Island of New Zealand: Geodetic constraints over the interval 1982–1994. J. Geophys. Res. 103 B12 30147–30165 doi: 10.1029/98JB02228.

  • Bull W. A. Cooper A. F. 1986: Uplifted marine terraces along the Alpine Fault New Zealand. Science 234 4781 1225–1228 doi: 10.1126/science.234.4781.1225.

  • Cande S. C. Stock J. M. 2004: Pacific-Antarctic-Australia motion and the formation of the Macquarie Plate. Geophys. J. Int. 157 1 399–414 doi: 10.1111/j.1365-246X.2004.02224.x.

  • Cole J. W. Darby D. J. Stern T. A. 1995: Taupo Volcanic Zone and Central Volcanic Region Backarc Structures of North Island New Zealand. In: Taylor B. (Ed.) Backarc Basins. Springer US Boston MA 1–28.

  • Dach R. Hugentobler U. Fridez P. Meindl M. 2007: Bernese GPS Software Version 5.0. p. 612 Astron. Inst. Univ. of Bern Bern.

  • DeMets C. Gordon R. G. Argus D. F. Stein S. 1990: Current plate motions. Geophys. J. Int. 101 2 425–478 doi: 10.1111/j.1365-246X.1990.tb06579.x.

  • DeMets C. Gordon R. G. Argus D. F. Stein S. 1994: Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions. Geophys. Res. Lett. 21 20 2191–2194 doi: 10.1029/94GL02118.

  • DeMets C. Gordon R. G. Argus D. F. 2010: Geologically current plate motions. Geophys. J. Int. 181 1 1–80 doi: 10.1111/j.1365-246X.2009.04491.x.

  • Grindley G. W. Hull A. G. 1986: Historical Taupo earthquakes and earth deformation. R. Soc. N.Z. Bull. 24 173–186.

  • Holt W. E. Haines A. J. 1995: The kinematics of northern South Island New Zealand determined from geologic strain rates. J. Geophys. Res. 100 B9 17991–18010 doi: 10.1029/95JB01059.

  • Herring T. A. 2003: Matlab Tools for viewing GPS velocities and time series. GPS solutions 7 3 194–199.

  • Kelsey H. M. Cashman S. M. Beanland S. Berryman K. R. 1995: Structural evolution along the inner forearc of the obliquely convergent Hikurangi margin New Zealand. Tectonics 14 1 1–18 doi: 10.1029/94TC01506.

  • Kim M. J. Schwartz S. Y. Bannister S. 2011: Non-volcanic tremor associated with the March 2010 Gisborne slow slip event at the Hikurangi subduction margin New Zealand. Geophys. Res. Lett. 38 L14301 doi:10.1029/2011GL048400.

  • Langbein J. Johnson H. 1997: Correlated errors in geodetic time series: implications for time dependent deformation. J. Geophys. Res. 102 B1 591–603 doi: 10.1029/96JB02945.

  • Lyard F. Lefevre F. Letellier T. Francis O. 2006: Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56 5 394–415 doi: 10.1007/s10236-006-0086-x.

  • Mao A. Harrison C. G. A. Dixon T. H. 1999: Noise in GPS coordinate time series. J. Geophys. Res. 104 B2 2797–2816 doi: 10.1029/1998JB900033.

  • Nicol A. Van Dissen R. J. Vella P. Alloway B. V. Melhuish A. 2002: Growth of contractional structures during the last 10 m.y. at the southern end of the emergent Hikurangi forearc basin New Zealand. N.Z. J. Geol. Geophys. 45 3 365–385 doi: 10.1080/00288306.2002.9514979.

  • Nicol A. Beavan J. 2003: Shortening of an overriding plate and its implications for slip on a subduction thrust central Hikurangi Margin New Zealand. Tectonics 22 6 1070 doi: 10.1029/2003TC001521.

  • Nicol A. Mazengarb C. Chanier F. Rait G. Uruski C. Wallace L. M. 2007: Tectonic evolution of the active Hikurangi subduction margin New Zealand since the Oligocene. Tectonics 26 4 TC4002 doi: 10.1029/2006TC002090.

  • Nicol A. Wallace L. M. 2007: Temporal stability of deformation rates: comparison of geological and geodetic observations Hikurangi Subduction Margin New Zealand. Earth Planet Sci. Lett. 258 3-4 397–413 doi: 10.1016/j.epsl.2007.03.039.

  • Norris R. J. Cooper A. F. 2001: Late Quaternary slip rates and slip partitioning on the Alpine Fault New Zealand. J. Struct. Geol. 23 2-3 507–520 doi: 10.1016/S0191-8141(00)00122-X.

  • Otway P. M. 1986: Vertical deformation associated with the Taupo earthquake swarm June 1983. In: Reilly W. I. Harford B. E. (Ed.): Recent crustal movements of the Pacific region Wellington R. Soc. N.Z. Bull. 24 187–200.

  • Otway P. M. Blick G. H. Scott B. J. 2002: Vertical deformation at Lake Taupo New Zealand from lake levelling surveys 1979–1999. N.Z. J. Geol. Geophys. 45 1 121–132 doi: 10.1080/00288306.2002.9514964.

  • Petit G. Luzum B. Eds. 2010: IERS conventions (2010) IERS Tech Note 36 Bundesamts für Kartogr. und Geod. Frankfurt am Main Germany p. 179 ISBN 3-89888-989-6.

  • Samsonov S. Beavan J. Gonzalez P. J. Tiampo K. Fernandez J. 2011: Ground deformation in the Taupo Volcanic Zone New Zealand observed by ALOS PALSAR interferometry. Geophys. J. Int. 187 1 147–160 doi: 10.1111/j.1365-246X.2011.05129.x.

  • Schmid R. Steigenberger P. Gendt G. Ge M. Rothacher M. 2007: Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J. Geod. 81 12 781–798 doi: 10.1007/s00190-007-0148-y.

  • Sutherland R. Norris R. J. 1995: Late Quaternary displacement rate paleoseismicity and geomorphic evolution of the Alpine Fault; evidence from Hokuri Creek South Westland New Zealand. N.Z. J. Geol. Geophys. 38 4 419–430 doi: 10.1080/00288306.1995.9514669.

  • Tenzer R. Stevenson M. Denys P. 2012: A Compilation of a Preliminary Map of Vertical Deformations in New Zealand from Continuous GPS Data. In: Kenyon S. Pacino M. C. Marti U. (Eds) Geodesy for Planet Earth. Springer Berlin Heidelberg Berlin Heidelberg 697–703 doi: 10.1007/978-3-642-20338-1_86.

  • Tippett J. M. Kamp P. J. J. 1993: Fission track analysis of the late Cenozoic vertical kinematics of continental Pacific Crust South Island New Zealand. J. Geophys. Res. 98 B9 16119–16148 doi: 10.1029/92JB02115.

  • Villamor P. Berryman K. R. 2001: A Late Quaternary extension rate in the Taupo Volcanic Zone New Zealand derived from fault slip data. N.Z. J. Geol. Geophys. 44 2 243–269 doi: 10.1080/00288306.2001.9514937.

  • Walcott R. I. 1984: The kinematics of the plate boundary zone through New Zealand: a comparison of short-and long-term deformations. Geophys. J. R. Astr. Soc. 79 2 613–633 doi: 10.1111/j.1365-246X.1984.tb02244.x.

  • Wallace L. M. Beavan J. McCaffrey R. Darby D. 2004: Subduction zone coupling and tectonic block rotations in the North Island New Zealand. J. Geophys. Res. 109 B12406 doi: 10.1029/2004JB003241.

  • Wallace L. M. Beavan J. McCaffrey R. Berryman K. Denys P. 2007: Balancing the plate motion budget in the South Island New Zealand using GPS geological and seismological data. Geophys. J. Int. 168 1 332–352 doi: 10.1111/j.1365-246X.2006.03183.x.

  • Wallace L. M. Beavan J. 2010: Diverse slow slip behavior at the Hikurangi subduction margin New Zealand. J. Geophys. Res. 115 B12402 doi: 10.1029/2010JB007717.

  • Wdowinski S. Bock Y. Zhang J. Fang P. Genrich J. F. 1997: Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J. Geophys. Res. 102 B8 18057–18070 doi: 10.1029/97JB01378.

  • Webb F. H. Zumberge J. F. 1995: An introduction to GIPSY-OASIS-II precision software from the analysis of data from the Global Positioning System. Report JPL D-11088 Pasadena California Institute of Technology.

  • Wellman H. W. 1979: An uplift map for the South Island of New Zealand and a model for uplift of the Southern Alps. R. Soc. N.Z. Bull. 18 13–20.

  • Wessel P. Smith W. H. F. 1995: New version of generic mapping tools released. EOS Trans. Am. Geophys. Union 76 p. 329.

  • Williams S. D. P 2003: The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J. Geod. 76 9 483–494 doi: 10.1007/s00190-002-0283-4.

  • Williams S. D. P. 2008: CATS: GPS coordinate time series analysis software. GPS Solutions 12 2 147–153 doi: 10.1007/s10291-007rr0086-4.

  • Zumberge J. F. Heflin M. B. Jefferson D. C. Watkins M. M. Webb F. H. 1997: Precise Point Positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 102 B3 5005–5017 doi: 10.1029/96JB03860.

Search
Journal information
Impact Factor


CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 594 505 5
PDF Downloads 139 105 1