Modeling of CME and CIR driven geomagnetic storms by means of artificial neural networks

Open access

Abstract

A model of geomagnetic storms based on the method of artificial neural networks (ANN) combined with an analytical approach is presented in the paper. Two classes of geomagnetic storms, caused by coronal mass ejections (CMEs) and those caused by corotating interaction regions (CIRs), of medium and week intensity are subject to study. As the model input, the hourly solar wind parameters measured by the ACE satellite at the libration point L1 are used. The time series of the Dst index is obtained as the model output. The simulated Dst index series is compared with the corresponding observatory data. The model reliabilty is assessed using the skill scores, namely the correlation coefficient CC and the prediction efficiency PE. The results show that the model performance is better for the CME driven storms than for the CIR driven storms. At the same time, it appears that in the case of medium and weak storms the model performance is worse than in the case of intense storms

Alves M. V., Echer E., Gonzalez W. D., 2006: Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res., 111, A7, doi: 10.1029/2005JA01 1379.

Cramer W. D., Turner N. E., Fok M.-C., Buzulukova N. Y., 2013: Effects of different geomagnetic storm drivers on the ring current: CRCM results. J. Geophys. Res., 118, 1062-1073, doi: 10.1002/jgra.50138.

Kim R.-S., Cho K.-S., Moon Y.-J., Kim Y.-H., Yi Y., Dryer M., Bong S.-C., Park Y.-D., 2005: Forecast evaluation of the coronal mass ejection (CME) geoeffectiveness using halo CMEs from 1997 to 2003. J. Geophys. Res., 110, A11104, doi: 10.1029/2005JA011218.

Laughlin L. K., Turner N. E., Mitchell E. J., 2008: Geoeffectiveness of CIR and CME events: Factors contributing to their differences. Journal of the Southeastern Association for Research in Astronomy, 2, 19-22.

Pulkkinen T., 2007: Space Weather: Terrestrial Perspective. Living Rev. Solar Phys., 4, 1, URL (cited on 24/01/2014): http://www.livingreviews.org/lrsp-2007-1, doi: 10.12942/lrsp-2007-1.

Rastätter L., Kuznetsova M. M., Glocer A., Welling D., Meng X., Raeder J., Wiltberger M., Jordanova V. K., Yu Y., Zaharia S., Weigel R. S., Sazykin S., Boynton R., Wei H., Eccles V., Horton W., Mays M. L., Gannon J., 2013: Geospace environment modeling 2008-2009 challenge: Dst index. Space Weather, 11, 187-205, doi: 10.1002/swe.20036.

Revallo M., Valach F., Hejda P., Bochníček J., 2014: A neural network Dst-index model driven by input time histories of the solar wind-magnetosphere interaction. Journal of Atmospheric and Solar Terrestrial Physics, 110-111, 9-14, doi: 10.1016/j.jastp. 2014.01.011.

Revallo M., Valach F., Váczyová M., 2010: The geomagnetic storm of August 2010 as a lesson of the space weather modelling. Contributions to Geophysics and Geodesy, 40, 4, 313-322, doi: 10.2478/v10126-010-0013-5.

Richardson I. G., Cliver E. W., Cane H. V., 2000: Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res., 105, A8, 18203-18213, doi: 10.1029/1999JA000400.

Romashets E. P., Poedts S., Vandas M., 2008: Modeling of the magnetic field in the magnetosheath region. J. Geophys. Res., 113, A02203, doi: 10.1029/2006JA012072.

Tsurutani B. T., Gopalswamy N., McPherron R. L., Gonzalez W. D., Lu G., Guarnieri F. L., 2006: Magnetic storms cause by corotating solar wind streams. In: Recurrent Magnetic Storms: Corotating Solar Wind Streams, Edited by Tsurutani B., McPherron R.,. Gonzalez W. D, Lu G., Sobral J. H. A., Gopalswamy N., 1-18.

Turner N. E., Cramer W. D., Earles S. K., Emery B. A., 2009: Geofficiency and energy partitioning in CIR-driven and CME-driven storms. Journal of Atmospheric and Solar Terrestrial Physics, 71, 10-11, 1023-1031, doi: 10.1016/j.jastp.2009.02.005.

Turner N. E., Mitchell E. J., Knipp D. J., Emery B. A., 2006: Energetics of magnetic storms driven by corotating interaction regions: A study of geoeffectiveness. In: Recurrent Magnetic Storms: Corotating Solar Wind Streams, Edited by Tsurutani B., McPherron R., Gonzalez W. D., Lu G., Sobral J. H. A., Gopalswamy N., 113-124.

Zhang Y., SunW., Feng X. S., Deehr C. S., Fry C. D., Dryer M., 2008: Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23. J. Geophys. Res., 113, A8, doi 10.1029/2008JA013095.

Contributions to Geophysics and Geodesy

The Journal of Geophysical Institute of Slovak Academy of Sciences

Journal Information


CiteScore 2017: 0.36

SCImago Journal Rank (SJR) 2017: 0.199
Source Normalized Impact per Paper (SNIP) 2017: 0.216

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 136 10
PDF Downloads 77 73 7