Spatial expression of potential wind erosion threats to arable soils in the Czech Republic

Open access

Abstract

Wind erosion risk strongly depends on soil surface conditions. Aridity or dryness of the climate in the Czech Republic is a typical property for Southern Moravia and Central Bohemia. The study aims to map and assess qualitatively the areas vulnerable to wind erosion using available data and intelligible methodology. The evaluation is based on the number of days when at least once a day dry condition of bare soil surface was recorded. Daily data of soil surface state from 70 climatological stations to 500 m altitude from 1981 to 2010 are used. First, soil conditions from 1st March to 30th April and from 1st September to 31st October were evaluated. Evaluation of erosion risk in May is presented separately in the second phase, because only thermophilous crops (late-sowing crops) can be affected in that time. The results show that mainly in the South and Southeast Moravia, there are areas where up to 60 days with dry soil surface in the spring and autumn occurred. Occurrence of such conditions may represent potential risk of wind erosion for arable soils and therefore potential risk for sown crops and loss of fertile soil surface which is irreplaceable for agricultural activities. The results are applicable for preparation of a concept of wind erosion control measures in the threatened regions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Afifi A. Gad A. 2011: Assessment and mapping areas affected by soil erosion and de- sertification in the north coastal part of Egypt. International Journal of Water Resources and Arid Environments 1 2 83-91.

  • Alley W. M. 1984: The Palmer drought severity index: limitations and assumptions. Journal of Climate and Applied Meteorology. 23 7 1100-1109.

  • Amézketa E. Aragués R. Carranza R. Urgel B. 2003: Macro- and micro-aggregate sta- bility on soils determined by a combination of wet-sieving and laser-ray diffraction. Spanish Journal of Agricultural Research 1 4 83-94.

  • Bolte K. Hartmann P. Fleige H. Horn R. 2011: Determination of critical soil water content and matric potential for wind erosion. Journal of Soils and Sediments 11 2 209-220.

  • Bullock M. S. Larney F. J. McGinn S. M. Izaurralde R. C. 1999: Freeze-drying processes and wind credibility of a clay loam soil in southern Alberta. Canadian Journal of Soil Science 79. 1 127-135.

  • Colazo J. C. Buschiazzo D. E. 2010: Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma 159 1-2 228-236.

  • Fukalová P. Středová H. Vejtasová K. 2014: Development and prediction of selected temperature and precipitation characteristics in Southern Moravia. Acta Universi- tatis Agriculturae et Silviculturae Mendelianae Brunensis 62 1 91-98.

  • Gournellos T. H. Evelpidou N. Vassilopoulos A. 2004: Developing an erosion risk map using soft computing methods (case study at Sifnos Island). Natural Hazards 31 63-83.

  • Chepil W. S. 1953: Factors that influence clod structure and erodibility of soil by wind: I. Soil texture. Soil Science 75 6 473-484.

  • Chepil W. S. 1956: Influence of moisture on erodibility of soil by wind. Soil Science Society of America Proceedings 20 288-292. Chepil W. S. 1958: Soil conditions that influence wind erosion. Technical Bulletin No. 1185. U.S. Department of Agriculture Washington D. C. 40 p.

  • Kalvová J. Kašpárek L. Janouš D. Žalud Z. Kazmarová H. 2002: Climate change in- duced impacts on water regime agriculture forestry and human health in the Czech Republic (Zpřesnění scénářů projekce klimatické změny na území České republiky a odhadů projekce klimatické změny na hydrologický režim sektor zemědělství sek- tor lesního hospodářství a na lidské zdraví v ČR). National Climatic Program of the Czech Republic Prague: 151 p. (in Czech)

  • Kohút M. Rožnovský J. Chuchma F. 2010: Long-term available soil water resource and its varaibility in the Czech Republic (Dlouhodobá zásoba využitelné půdní vody a její variabilita na území České republiky). In: Voda v krajině Lednice 31.5.-1.6.2010 35-46. (in Czech)

  • Mužíková В. Středa T. Středová H. 2013: State of bare soil surface as a spring drought indicator. Contrib. Geophys. Geod. 43 3 197-207.

  • Podhrázská J. Kučera J. Chuchma F. Středa T. Středová H. 2013: Effect of changes in some climatic factors on wind erosion risks - the case study of South Moravia. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61 6 1829-1837.

  • Singer M. J. Shainberg I. 2004: Mineral soil surface crusts and wind and water erosion. Earth Surface Processes and Landforms 29 9 1065-1075.

  • Skidmore E. L. Powers D. H. 1982: Dry soil-aggregate stability: energy-based index. Soil Science Society of America Journal 46 6 1274-1279.

  • Slabá N. 1972: Manual for observers at the meteorological stations in Czechoslovakia (Návod pro pozorovatele meteorologických stanic ČSSR). 2nd revised edition Hy- drometeorologický ústav Sborníky předpisů Hydrometeorologického ústavu v Praze 7 Praha 222 p. (in Czech).

  • Středová H. Středa T. Rožnovský J. 2013: Long-term comparison of climatological variables used for agricultural land appraisement. Contrib. Geophys. Geod. 43 3 179-195.

  • Takáč J. 2013: Assessment of drought in agricultural regions of Slovakia using soil water dynamics simulation. Agriculture (Poľnohospodárstvo) 59 2 74-87.

  • Tekušová M. Horecká V. Jančovičová L’. 2013: State of ground in relation to pre- cipitation characteristics during the vegetation seasons in Hurbanovo (Stav povrchu pôdy vo vzťahu k zrážkomerným charakteristikám počas vegetačných období v Hur- banove). In: Rostliny v podmínkách měnícího se klimatu. Lednice 20.-21.10.2011 Úroda vědecká příloha 2011 629-639 (in Czech).

  • Yoder R. E. 1936: A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal of American Society of Agronomy 28 5 337-351.

  • Žídek D. Lipina P. 2003: Manual for observers at the meteorological stations CHMI. Metodological guide of CHMI No. 13. (Návod pro pozorovatele meteorologických stanic ČHMÚ. Metodický předpis) 13 CHMI Ostrava 90 p. (in Czech).

Search
Journal information
Impact Factor


CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 99 3
PDF Downloads 76 53 0