Global maps of the step-wise topography corrected and crustal components stripped geoids using the CRUST 2.0 model

Open access

Global maps of the step-wise topography corrected and crustal components stripped geoids using the CRUST 2.0 model

We compile global maps of the step-wise topography corrected and crustal components stripped geoids based on the geopotential model EGM'08 complete to spherical harmonic degree 180 and the CRUST 2.0 global crustal model. The spectral resolution complete to degree 180 is used to compute the primary indirect bathymetric stripping and topographic effects on the geoid, while degree 90 for the primary indirect ice stripping effect. The primary indirect stripping effects of the soft and hard sediments, and the upper, middle and lower consolidated crust components are forward modeled in spatial form using the 2 × 2 arc-deg discrete data of the CRUST 2.0 model. The ocean, ice, sediment and consolidated crust density contrasts are defined relative to the adopted reference crustal density of 2670 kg/m3. Finally we compute and apply the primary indirect stripping effect of the density contrast (relative to the mantle) of the reference crust. The constant value of -520 kg/m3 is adopted for this density contrast relative to the mantle. All data are evaluated on a 1 × 1 arc-deg geographical grid. The complete crust-stripped geoidal undulations, globally having a range of approximately 1.5 km, contain the gravitational signal coming from the global mantle lithosphere (upper mantle) morphology and density composition, and from the sub-lithospheric density heterogeneities. Large errors in the complete crust-stripped geoid are expected due to uncertainties of the CRUST 2.0 model, i.e., due to deviations of the CRUST 2.0 model density from the real earth's crustal density and due to the Moho-boundary uncertainties.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alvey A. Gaina C. Kusznir N. J. Torsvik T. H. 2008: Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth Planet Sci. Lett. 274 310-321.

  • Artemjev M. E. Kaban M. K. 1994: Density inhomogeneities isostasy and flexural rigidity of the lithosphere in the Transcaspian region. Tectonophysics 240 281-297.

  • Artemjev M. E. Kaban M. K. Kucherinenko V. A. Demjanov G. V. Taranov V. A. 1994: Subcrustal density inhomogeneities of the Northern Euroasia as derived from the gravity data and isostatic models of the lithosphere. Tectonophysics 240 248-280.

  • Bassin C. Laske G. Masters G. 2000: The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81 F897.

  • Bielik M. 1988: A preliminary stripped gravity map of the Pannonian Basin. Phys. Earth Planet Inter. 51 185-189.

  • Bielik M. šefara J. Kováč M. Bezák V. Plašienka D. 2004: The Western Carpathians-interaction of Hercynian and Alpine processes. Tectonophysics 393 63-86.

  • Braun A. Kim H. R. Csatho B. von Frese R. R. B. 2007: Gravity-inferred crustal thickness of Greenland. Earth Planet. Sci. Lett. 262 138-158.

  • Chase C. G. McNutt M. K. 1982: The geoid: effect of compensated topography and uncompensated oceanic trenches. Geophys. Res. Lett. 9 29-32.

  • Dahlen F. A. 1981: Isostasy and the ambient state of stress in the oceanic lithosphere. J. Geophys. Res. 86 B 7801-7807.

  • Dérerová J. Zeyen H. Bielik M. Salman K. 2006: Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics 25 3 doi: TC3009 10.1029/2005TC001883.

  • Hager B. H. 1983: Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere. Earth Planet. Sci. Lett. 63 97-109.

  • Heiskanen W. H. Moritz H. 1967: Physical geodesy. San Francisco WH Freeman and Co.

  • Hinze W. J. 2003: Bouguer reduction density why 2.67? Geophysics 68 5 1559-1560 doi: 10.1190/1.1620629.

  • Jiménez-Munt I. Fernàndez M. Vergés J. Platt J. P. 2008: Lithosphere structure underneath the Tibetan Plateau inferred from elevation gravity and geoid anomalies. Earth Planet. Sci. Lett. 267 276-289.

  • Kaban M. K. 2001: A gravity model of the north Eurasia crust and upper mantle: 1. Mantle and isostatic residual gravity anomalies. Russ. J. Earth Sci. 3 143-163.

  • Kaban M. K. 2002: A gravity model of the north Eurasia crust and upper mantle: 2. The Alpine-Mediterranean fold-belt and adjacent structures of the southern former USSR. Russ. J. Earth Sci. 4 http://www.agu.org/wps/rjes/. http://www.agu.org/wps/rjes/

  • Kaban M. K. Schwintzer P. Tikhotsky S. A. 1999: Global isostatic gravity model of the Earth. Geophys. J. Int. 136 519-536.

  • Kaban M. K. Schwintzer P. Reigber Ch. 2004: A new isostatic model of the lithosphere and gravity field. Journal of Geodesy 78 368-385 doi: 10.1007/s00190-004-0401-6.

  • Le Stunff Y. Ricard Y. 1995: Topography and geoid due to lithospheric mass anomalies. Geophys. J. Int. 122 982-990.

  • Lister G. R. B. 1982: Geoid anomalies over a cooling lithosphere: source of a third kernel of upper mantle thermal parameters and thus an inversion. Geophys. J. R. Astr. Soc. 68 219-240.

  • Mooney W. D. Laske G. Masters T. G. 1998: CRUST 5.1: A global crustal model at 5° × 5°. J. Geophys. Res. 103B 727-747.

  • Novák P. Grafarend E. W. 2006: The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data. Studia Geophys. Geod. 50 4 549-582 doi: 10.1007/s11200-006-0035-7.

  • Pavlis N. K. Holmes S. A. Kenyon S. C. Factor J. K. 2008a: An Earth Gravitational Model to Degree 2160: EGM 2008 presented at Session G3: "GRACE Science Applications" EGU Vienna.

  • Pavlis N. K. Holmes S. A. Kenyon S. C. Factor J. K. 2008b: EGM2008: An Overview of its Development and Evaluation. Presented at IAG Int. Symp. GGEO 2008 23-27 June 2008 Chania Crete Greece.

  • Schwintzer P. Reigber C. Bode A. Kang Z. Zhu SY. Massmann F. H. Raimondo J. C. Biancale R. Balmino G. Lemoine J. M. Moynost B. Marty J. C. Barlier F. and Boudon Y. 1997: Long-wavelength global gravity field models: GRIM4-S4 GRIM4-C4. Journal of Geodesy 71 4 189-208.

  • Tassara A. Swain Ch. Hackney R. Kirby J. 2007: Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data. Earth Planet. Sci. Lett. 253 17-36.

  • Tenzer R. Hamayun Vajda P. 2009: Global maps of CRUST 2.0 crustal components stripped gravity disturbances. J. Geophys. Res. Solid Earth (accepted).

  • Tesauro M. Kaban M. K. Cloetingh S. A. Hardebol N. J. Beekman F. 2007: 3D strength and gravity anomalies of the European lithosphere. Earth Planet. Sci. Lett. 263 56-73.

  • Vaníček P. Najafi M. Martinec Z. Harrie L. Sjöberg L. E. 1995: Higher-degree reference field in the generalised Stokes-Helmert scheme for geoid computation. Journal of Geodesy 70 176-180.

  • West B. P. Fujimoto H. Honsho Ch. Tamaki K. Sempéré J. C. 1995: A three-dimensional gravity study of the Rodrigues Triple Junction and Southeast Indian Ridge. Earth Planet. Sci. Lett. 133 175-184.

  • Zeyen H. Dérerová J. Bielik M. 2002: Determination of the continental lithosphere thermal structure in the Western Carpathians: Integrated modelling of surface heat flow gravity anomalies and topography. Phys. Earth Planet. Inter. 134 89-104.

Search
Journal information
Impact Factor


CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.615

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 150 0
PDF Downloads 48 36 2