In the paper we characterize the two-dimensional generalized Berwald manifolds in terms of the classical setting of Finsler surfaces (Berwald frame, main scalar etc.). As an application we prove that if a Lands-berg surface is a generalized Berwald manifold then it must be a Berwald manifold. Especially, we reproduce Wagner’s original result in honor of the 75th anniversary of publishing his pioneering work about generalized Berwald manifolds.
[1] D. Bao: On two curvature-driven problems in Riemann-Finsler geometry. Advanced Studies in Pure Mathematics 48 (2007) 19–71.
[2] D. Bao, S.-S. Chern, Z. Shen: An Introduction to Riemann-Finsler geometry. Springer-Verlag (2000).
[3] L. Berwald: Über zweidimensionale allgemeine metrische Räume. Journal für die reine und angewandte Mathematik 156 (1927) 191–222.
[4] L. Berwald: On Finsler and Cartan geometries. III: two-dimensional Finsler spaces with rectilinear extremals. Annals of Mathematics (1941) 84–112.
[5] M. Hashiguchi: On conformal transformations of Finsler metrics. J. Math. Kyoto Univ. 16 (1976) 25–50.
[6] M. Matsumoto: Foundations of Finsler geometry and special Finsler spaces. Kaiseisha press (1986).
[7] Z. Shen: Di erential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers (2001).
[8] Sz. Vattamány, Cs. Vincze: Two-dimensional Landsberg manifolds with vanishing Douglas tensor. Annales Univ. Sci. Budapest 44 (2001) 11–26.
[9] Sz. Vattamány, Cs. Vincze: On a new geometrical derivation of two-dimensional Finsler manifolds with constant main scalar. Period. Math. Hungar. 48 (1–2) (2004) 61–67.
[10] Cs. Vincze: A new proof of Szabó’s theorem on the Riemann-metrizability of Berwald manifolds. Acta Math. Acad. Paedagog. Nyházi (NS) 21 (2) (2005) 199–204.
[11] Cs. Vincze: On a scale function for testing the conformality of Finsler manifolds to a Berwald manifold. Journal of Geometry and Physics 54 (4) (2005) 454–475.
[12] Cs. Vincze: On Berwald and Wagner manifolds. Acta Math. Acad. Paedagog. Nyházi.(NS) 24 (2008) 169–178.
[13] Cs. Vincze: On generalized Berwald manifolds with semi-symmetric compatible linear connections. Publ. Math. Debrecen 83 (4) (2013) 741–755.
[14] Cs. Vincze: On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors. European Journal of Mathematics 3 (4) (2017) 1098–1171.
[15] Cs. Vincze: Lazy orbits: an optimization problem on the sphere. Journal of Geometry and Physics 124 (2018) 180–198.
[16] Cs. Vincze, M. Oláh, Layth M. Alabdulsada: On the divergence representation of the Gauss curvature of Riemannian surfaces and its applications. Rendiconti del Circolo Matematico di Palermo Series 2 (2018) 1–13.
[17] V. Wagner: On generalized Berwald spaces. CR (Doklady) Acad. Sci. URSS (NS) 39 (1943) 3–5.