Hilbert series of the Grassmannian and k-Narayana numbers

Open access

Abstract

We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the q-Hilbert series is a Vandermonde-like determinant. We show that the h-polynomial of the Grassmannian coincides with the k-Narayana polynomial. A simplified formula for the h-polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the k-Narayana numbers, i.e. the h-polynomial of the Grassmannian.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. Berman P. Köhler: Cardinalities of finite distributive lattices. Mitt. Math. Sem. Giessen 121 (1976) 103–124.

  • [2] J.V. Chipalkatti: Notes on Grassmannians and Schubert varieties. Queen’s Papers in Pure and Applied Mathematics 13 (119) (2000).

  • [3] H. Derksen G. Kemper: Computational invariant theory. Springer (2015).

  • [4] S.R. Ghorpade: Note on Hodge’s postulation formula for Schubert varieties. In: Lecture Notes in Pure and Applied Mathematics. Marcel Dekker New York (2001) 211–220.

  • [5] B.H. Gross N.R. Wallach: On the Hilbert polynomials and Hilbert series of homogeneous projective varieties. Arithmetic geometry and automorphic forms 19 (2011) 253–263.

  • [6] W.V.D. Hodge: A note on k-connexes. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (1942) 129–143.

  • [7] W.V.D Hodge: Some enumerative results in the theory of forms. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (1943) 22–30.

  • [8] W.V.D. Hodge D. Pedoe: Methods of algebraic geometry Volume 2. Cambridge University Press (1952).

  • [9] V. Lakshmibai J. Brown: The Grassmannian Variety: Geometric and Representation-theoretic Aspects. Springer (2015).

  • [10] D.E. Littlewood: On the number of terms in a simple algebraic form. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (1942) 394–396.

  • [11] P.A. MacMahon: Combinatory analysis. Cambridge University Press (1916).

  • [12] R. Maier: A generalization of Euler’s hypergeometric transformation. Transactions of the American Mathematical Society 358 (1) (2006) 39–57.

  • [13] A.R. Miller R.B. Paris: Euler-type transformations for the generalized hypergeometric function r+2Fr+1(x). Zeitschrift für angewandte Mathematik und Physik 62 (1) (2011) 31–45.

  • [14] A.R. Miller R.B. Paris: Transformation formulas for the generalized hypergeometric function with integral parameter di erences. Rocky Mountain Journal of Mathematics 43 (1) (2013) 291–327.

  • [15] S. Mukai: An introduction to invariants and moduli. Cambridge University Press (2003). Cambridge Studies in Advanced Mathematics 81

  • [16] R. Nanduri: Hilbert coe cients of Schubert varieties in Grassmannians. Journal of Algebra and Its Applications 14 (3) (2015) 1550036.

  • [17] T.V. Narayana: A partial order and its applications to probability theory. Sankhya: The Indian Journal of Statistics (1959) 91–98.

  • [18] F. Santos C. Stump V. Welker: Noncrossing sets and a Graßmann associahedron. In: Forum of Mathematics Sigma. Cambridge University Press (2017) 49p.

  • [19] R.P. Stanley: Theory and application of plane partitions. Part 2. Studies in Applied Mathematics 50 (3) (1971) 259–279.

  • [20] B. Sturmfels: Gröbner bases and convex polytopes. American Mathematical Society (1996). University Lecture Series Vol. 8.

  • [21] R.A. Sulanke: Generalizing Narayana and Schröder numbers to higher dimensions. The Electronic Journal of Combinatorics 11 (1) (2004) 54p.

  • [22] R.A. Sulanke: Three dimensional Narayana and Schröder numbers. Theoretical computer science 346 (2–3) (2005) 455–468.

Search
Journal information
Impact Factor


CiteScore 2018: 0.4

SCImago Journal Rank (SJR) 2018: 0.193
Source Normalized Impact per Paper (SNIP) 2018: 0.696

Mathematical Citation Quotient (MCQ) 2018: 0.17

Target audience:

researchers in all areas of pure and applied mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 171 171 49
PDF Downloads 112 112 39