We study lightlike hypersurfaces M of an indefinite Kaehler manifold M̅ of quasi-constant curvature subject to the condition that the characteristic vector field ζ of M̅ is tangent to M. First, we provide a new result for such a lightlike hypersurface. Next, we investigate such a lightlike hypersurface M of M̅ such that
(1) the screen distribution S(TM) is totally umbilical or
(2) M is screen conformal.
[1] C. Atindogbe, K.L. Duggal: Conformal screen on lightlike hypersurfaces. International J. of Pure and Applied Math. 11 (4) (2004) 421–442.
[2] B.Y. Chen, K. Yano: Hypersurfaces of a conformally flat space. Tensor (NS) 26 (1972) 318–322.
[3] K.L. Duggal, A. Bejancu: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht (1996).
[4] K.L. Duggal, D.H. Jin: A classification of Einstein lightlike hypersurfaces of a Lorentzian space form. J. Geom. Phys. 60 (2010) 1881–1889.
[5] D.H. Jin: Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. Indian J. of Pure and Applied Math. 41 (4) (2010) 569–581.
[6] D.H. Jin: Lightlike real hypersurfaces with totally umbilical screen distributions. Commun. Korean Math. Soc. 25 (3) (2010) 443–450.
[7] G. de Rham: Sur la réductibilité d’un espace de Riemannian. Comm. Math. Helv. 26 (1952) 328–344.