Approach of q-Derivative Operators to Terminating q-Series Formulae

Open access

Abstract

The q-derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] W.A. Al-Salam A. Verma: On quadratic transformations of basic series. SIAM J. Math. 15 (1984) 414–420.

  • [2] G.E. Andrews: On q-analogues of the Watson and Whipple summations. SIAM J. Math. 7 (3) (1976) 332–336.

  • [3] G.E. Andrews: Connection coefficient problems and partitions. Proc. Sympos. Pure Math. 34 (1979) 1–24.

  • [4] G.E. Andrews: Pfa ‘s method (II): diverse applications. J. Comp. and Appl. Math. 68 (1–2) (1996) 15–23.

  • [5] W.N. Bailey: Generalized Hypergeometric Series. Cambridge University Press Cambridge (1935).

  • [6] W.N. Bailey: A note on certain q-identities. Quart. J. Math. (Oxford) 12 (1941) 173–175.

  • [7] W.N. Bailey: On the analogue of Dixon’s theorem for bilateral basic hypergeometric series. Quart. J. Math. (Oxford) 1 (1950) 318–320.

  • [8] D.M. Bressoud: Almost poised basic hypergeometric series. Proc. Indian Acad. Sci. Math. Sci. 97 (1–3) (1987) 61–66.

  • [9] L. Carlitz: Some formulas of F.H. Jackson. Monatsh. Math. 73 (1969) 193–198.

  • [10] L. Carlitz: Some q-expansion formulas. Glasnik Mat. 8 (28) (1973) 205–213.

  • [11] W. Chu: Inversion techniques and combinatorial identities: Basic hypergeometric identities. Publ. Math. Debrecen 44 (3–4) (1994) 301–320.

  • [12] W. Chu: Inversion techniques and combinatorial identities: Strange evaluations of basic hypergeometric series. Compos. Math. 91 (2) (1994) 121–144.

  • [13] W. Chu: Partial fractions and bilateral summations. J. Math. Phys. 35 (4) (1994) 2036–2042.

  • [14] W. Chu: Basic Almost-Poised Hypergeometric Series. Mem. Amer. Math. Soc. (1998).

  • [15] W. Chu: Partial-fraction expansions and well-poised bilateral series. Acta Sci. Mat. 64 (1998) 495–513.

  • [16] W. Chu: q-Derivative operators and basic hypergeometric series. Results Math. 49 (1-2) (2006) 25–44.

  • [17] W. Chu: Abel’s Method on summation by parts and Bilateral Well-Poised 3ψ3-Series Identities. In: S. Elaydi et al.: Di erence Equations Special Functions and Orthogonal Polynomials Proceedings of the International Conference (München Germany July 2005). World Scientific Publishers (2007) 752–761.

  • [18] W. Chu: Divided differences and generalized Taylor series. Forum Math. 20 (6) (2008) 1097–1108.

  • [19] W. Chu: Abel’s method on summation by parts and balanced q-series identities. Appl. Anal. Discrete Math. 4 (2010) 54–65.

  • [20] W. Chu: Elementary proofs for convolution identities of Abel and Hagen-Rothe. Electron. J. Combin. 17 (1) (2010) 24.

  • [21] W. Chu C. Wang: Bilateral inversions and terminating basic hypergeometric series identities. Discrete Math. 309 (12) (2009) 3888–3904.

  • [22] G. Gasper: Summation formulas for basic hypergeometric series. SIAM J. Math. Anal. 12 (2) (1981) 196–200.

  • [23] G. Gasper M. Rahman: Basic Hypergeometric Series. Cambridge University Press (2004). 2nd Ed.

  • [24] I.M. Gessel D. Stanton: Applications of q-Lagrange inversion to basic hypergeometric series. Trans. Amer. Math. Soc. 277 (1983) 173–201.

  • [25] H.W. Gould: Some generalizations of Vandermonde’s convolution. Amer. Math. Monthly 63 (1) (1956) 84–91.

  • [26] F.H. Jackson: Certain q-identities. Quart. J. Math. 12 (1941) 167–172.

  • [27] P.W. Karlsson: Hypergeometric formulas with integral parameter di erences. J. Math. Phys. 12 (2) (1971) 270–271.

  • [28] Z. Liu: An expansion formula for q-series and applications. Ramanujan J. 6 (4) (2002) 429–447.

  • [29] B.M. Minton: Generalized hypergeometric function of unit argument. J. Math. Phys. 11 (4) (1970) 1375–1376.

  • [30] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/17.7

  • [31] I.J. Slater: Generalized Hypergeometric Functions. Cambridge University Press Cambridge (1966).

  • [32] A. Verma V.K. Jain: Some summation formulae for nonterminating basic hypergeometric series. SIAM J. Math. Anal. 16 (3) (1985) 647–655.

  • [33] A. Verma C.M. Joshi: Some remarks on summation of basic hypergeometric series. Houston J. Math. 5 (2) (1979) 277–294.

Suche
Zeitschrifteninformation
Impact Factor


CiteScore 2018: 0.4

SCImago Journal Rank (SJR) 2018: 0.193
Source Normalized Impact per Paper (SNIP) 2018: 0.696

Mathematical Citation Quotient (MCQ) 2018: 0.17

<strong>Zielgruppe:</strong>

researchers in all areas of pure and applied mathematics

Metriken
Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 354 265 5
PDF Downloads 228 160 5