We consider and solve extremal problems in various bounded weakly pseudoconvex domains in ℂn based on recent results on boundedness of Bergman projection with positive Bergman kernel in Bergman spaces
[1] H. Ahn S. Cho: On the mapping properties of the Bergman projection on pseudoconvex domains with one degenerate eigenvalue. Complex Variables Theory Appl. 39 (4) (1999) 365–379.
[2] M. Arsenović R. Shamoyan: On distance estimates and atomic decomposition on spaces of analytic functions on strictly pseudoconvex domains. Bulletin Korean Math. Society 52 (1) (2015) 85–103.
[3] F. Beatrous: Estimates for derivatives of holomorphic functions in strongly pseudoconvex domains. Math. Zam. 191 (1) (1986) 91–116.
[4] P. Charpentier Y. Dupain: Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Mat. 50 (2006) 413–446.
[5] B. Chen: Weighted Bergman kernel: asymptotic behavior applications and comparison results. Studia Mathematica 174 (2) (2006) 111–130.
[6] H.R. Cho E.G. Kwon: Embedding of Hardy spaces into weighted Bergman spaces in bounded domains with C2 boundary. Illinois J. Math. 48 (3) (2004) 747–757.
[7] S. Cho: A mapping property of the Bergman projection on certain pseudoconvex domains. Tóhoku Math. Journal 48 (1996) 533–542.
[8] D. Ehsani I. Lieb: Lp-estimates for the Bergman projection on strictly pseudoconvex nonsmooth domains. Math. Nachr. 281 (7) (2008) 916–929.
[9] L.G. Gheorghe: Interpolation of Besov spaces and applications. Le Matematiche LV (Fasc. I) (2000) 29–42.
[10] M. Jevtić: Besov spaces on bounded symmetric domains. Matematički vesnik 49 (1997) 229–233.
[11] L. Lanzani E.M. Stein: The Bergman projection in Lp for domains with minimal smoothness. Illinois Journal of Mathematics 56 (1) (2012) 127–154.
[12] J.D. McNeal E.M. Stein: Mapping properties of the Bergman projection on convex domain of finite type. Duke Math. J. 73 (1994) 177–199.
[13] D.H. Phong E.M. Stein: Estimates for the Bergman and Szegö projection on strongly pseudoconvex domains. Duke Math. J. 44 (1977) 695–704.
[14] R.F. Shamoyan S.M. Kurilenko: On extremal problems in tubular domains over symmetric cones. Issues of Analysis 1 (2014) 44–65.
[15] R.F. Shamoyan O. Mihić: Extremal Problems in Certain New Bergman Type Spaces in Some Bounded Domains in ℂn. Journal of Function Spaces 2014 (2014) p. 11. Article ID 975434
[16] R.F. Shamoyan O. Mihić: On distance function in some new analytic Bergman type spaces in ℂn. Journal of Function Spaces 2014 (2014) p. 10. Article ID 275416
[17] R.F. Shamoyan O. Mihić: On new estimates for distances in analytic function spaces in higher dimension. Siberian Electronic Mathematical Reports 6 (2009) 514–517.
[18] K. Zhu: Holomorphic Besov spaces on bounded symmetric domains. Quarterly J. Math. 46 (1995) 239–256.
[19] K. Zhu: Holomorphic Besov spaces on bounded symmetric domains III. Indiana University Mathematical Journal 44 (1995) 1017–1031.