A new class of almost complex structures on tangent bundle of a Riemannian manifold

  • 1 Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, 53751 71379, Tabriz
  • 2 Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, 53751 71379, Tabriz

Abstract

In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced (0, 2)-tensor on the tangent bundle using these structures and Liouville 1-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M.T.K. Abbassi, G. Calvaruso, D. Perrone: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. Q. J. Math. 62 (2) (2011) 259–288.

  • [2] R. M. Aguilar: Isotropic almost complex structures on tangent bundles. Manuscripta Math. 90 (4) (1996) 429–436.

  • [3] I. Biswas, J. Loftin, M. Stemmler: Flat bundles on affine manifolds. Arabian Journal of Mathematics 2 (2) (2013) 159–175.

  • [4] J. Choi, A. P. Mullhaupt: Kählerian information geometry for signal processing. Entropy 17 (2015) 1581–1605.

  • [5] R. M. Friswell, C. M. Wood: Harmonic vector fields on pseudo-Riemannian manifolds. Journal of Geometry and Physics 112 (2017) 45–58.

  • [6] S.T. Lisi: Applications of Symplectic Geometry to Hamiltonian Mechanics. PhD thesis, New York University (2006)

  • [7] P. Petersen: Riemannian Geometry. Springer (2006).

  • [8] E. Peyghan, A. Heydari, L. Nourmohammadi Far: On the geometry of tangent bundles with a class of metrics. Annales Polonici Mathematici 103 (2012) 229–246.

  • [9] E. Peyghan, H. Nasrabadi, A. Tayebi: The homogenous lift to the (1, 1)-tensor bundle of a Riemannian metric. Int. J. Geom Meth. Modern Phys. 10 (4) (2013) 18p.

  • [10] A. A. Salimov, A. Gezer: On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Ann. Math. Ser. B 32 (3) (2011) 1–18.

  • [11] J. Zhang, F. Li: Symplectic and Kähler structures on statistical manifolds induced from divergence functions. In: Conference paper in Geometric Science of Information. Springer (2013) 595–603.

OPEN ACCESS

Journal + Issues

Search