Geometry of Mus-Sasaki metric

Open access

Abstract

In this paper, we introduce the Mus-Sasaki metric on the tangent bundle T M as a new natural metric non-rigid on T M. First we investigate the geometry of the Mus-Sasakian metrics and we characterize the sectional curvature and the scalar curvature.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M.T.K. Abbassi M. Sarih: On Natural Metrics on Tangent Bundles of Riemannian Manifolds. Archivum Mathematicum 41 (2005) 71–92.

  • [2] N. Cengiz A.A. Salimov: Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput. 142 (2–3) (2003) 309–319.

  • [3] J. Cheeger D. Gromoll: On the structure of complete manifolds of nonnegative curvature. Ann. of Math. 96 (2) (1972) 413–443.

  • [4] M. Djaa N.E.H. Djaa R. Nasri: Natural Metrics on T2 M and Harmonicity. International Electronic Journal of Geometry 6 (1) (2013) 100–111.

  • [5] M. Djaa J. Gancarzewicz: The geometry of tangent bundles of order r. Boletin Academia Galega de Ciencias 4 (1985) 147–165.

  • [6] N.E.H. Djaa S. Ouakkas M. Djaa: Harmonic sections on the tangent bundle of order two. Annales Mathematicae et Informaticae 38 (2011) 15–25.

  • [7] P. Dombrowski: On the Geometry of the Tangent Bundle. J. Reine Angew. Math. 210 (1962) 73–88.

  • [8] A. Gezer: On the Tangent Bundle With Deformed Sasaki Metric. International Electronic Journal of Geometry 6 (2) (2013) 19–31.

  • [9] S. Gudmundsson E. Kappos: On the Geometry of the Tangent Bundle with the Cheeger-Gromoll Metric. Tokyo J. Math. 25 (1) (2002) 75–83.

  • [10] O. Kowalski and M. Sekizawa: On Riemannian Geometry Of Tangent Sphere Bundles With Arbitrary Constant Radius. Archivum Mathematicum 44 (2008) 391–401.

  • [11] E. Musso F. Tricerri: Riemannian Metrics on Tangent Bundles. Ann. Mat. Pura Appl. 150 (4) (1988) 1–19.

  • [12] A.A. Salimov F. Agca: Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics 8 (2) (2011) 243–255.

  • [13] A.A Salimov A. Gezer: On the geometry of the (1 1)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics 32 (3) (2011) 369–386.

  • [14] A.A. Salimov A. Gezer K. Akbulut: Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math 6 (2) (2009) 135–147.

  • [15] A.A. Salimov S. Kazimova: Geodesics of the Cheeger-Gromoll Metric. Turk. J. Math. 33 (2009) 99–105.

  • [16] S. Sasaki: On the differential geometry of tangent bundles of Riemannian manifolds II. Tohoku Math. J. 14 (1962) 146–155.

  • [17] M. Sekizawa: Curvatures of Tangent Bundles with Cheeger-Gromoll Metric. Tokyo J. Math. 14 (2) (1991) 407–417.

  • [18] K. Yano S. Ishihara: Tangent and Cotangent Bundles. Marcel Dekker. INC. New York (1973).

Search
Journal information
Impact Factor


CiteScore 2018: 0.4

SCImago Journal Rank (SJR) 2018: 0.193
Source Normalized Impact per Paper (SNIP) 2018: 0.696

Mathematical Citation Quotient (MCQ) 2018: 0.17

Target audience:

researchers in all areas of pure and applied mathematics

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 356 306 4
PDF Downloads 265 214 7