Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents

Lingeshwaran Shangerganesh 1 , Arumugam Gurusamy 2  and Krishnan Balachandran 1
  • 1 Department of Humanities and Sciences, National Institute of Technology, , Goa , India
  • 2 Department of Mathematics, Bharathiar University, , Coimbatore , India

Abstract

In this work, we study the existence and uniqueness of weak solu- tions of fourth-order degenerate parabolic equation with variable exponent using the di erence and variation methods.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] B. Andreianov, M. Bendahmane, S. Ouaro: Structural stability for variable exponent elliptic problems, I: The p(x)-Laplacian kind problems. Nonlinear Anal. 73 (2010) 2{24.

  • [2] L. Ansini, L. Giacomelli: Shear-thinning liquid _lms: macroscopic and asymptotic behavior by quasi-self-similar solutions. Nonlinearity 15 (2002) 2147{2164.

  • [3] L. Ansini, L. Giacomelli: Doubly nonlinear thin-_lm equations in one space dimension. Arch. Ration. Mech. Anal. 173 (2004) 89{131.

  • [4] S.N. Antontsev, S.I. Shmarev: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60 (2005) 515{545.

  • [5] S. Antontsev, S. Shmarev: Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions. Handbook of Di_erential Equations: Stationary Partial Di_erential Equations 3 (2006) 1{100.

  • [6] S. Antontsev, S. Shmarev: Parabolic equations with anisotropic nonstandard growth conditions. Internat. Ser. Numer. Math. 154 (2006) 33{44.

  • [7] S. Antontsev, S. Shmarev: Blow-up of solutions to parabolic equations with nonstandard growth conditions. J. Comput. Appl. Math. 234 (2010) 2633{2645.

  • [8] S. Antontsev, S. Shmarev: Vanishing solutions of anisotropic parabolic equations with variable nonlinearity. J. Math. Anal. Appl. 361 (2010) 371{391.

  • [9] M. Bertsch, L. Giacomelli, G. Lorenzo, G. Karali: Thin-_lm equations with Partial wetting energy: Existence of weak solutions. Physica D 209 (2005) 17{27.

  • [10] V. Bhuvaneswari, L. Shangerganesh, K. Balachandran: Weak solutions for p-Laplacian equation. Adv. Nonlinear Anal. 1 (2012) 319{334.

  • [11] M. Bowen, J. Hulshof, J. R. King: Anomalous exponents and dipole solutions for the thin _lm equation. SIAM J. Appl. Math. 62 (2001) 149{179.

  • [12] J. W. Cahn, J. E. Hilliard: Free energy of nonuniform system I. interfacial free energy. J. Chem. Phys. 28 (1958) 258{367.

  • [13] C. P. Calderon, T. A. Kwembe: Dispersal models. Rev. Union Mat. Argentina 37 (1991) 212{229.

  • [14] K. Chang: Critical Point Theory and Its Applications. Shangai Sci. Tech. Press, Shangai (1986).

  • [15] Y. Chen, S. Levine, M. Rao: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006) 1383{1406.

  • [16] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka: Lebesgue and Sobolev Spaces With Variable Exponents. Springer-Verlag, Heidelberg (2011).

  • [17] L. C. Evans: Weak Convergence Methods for Nonlinear Partial Di_erential Equations. American Mathematical Society, Providence, RI (1990).

  • [18] W. Gao, Z. Guo: Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity. Ann. Mat. Pura Appl. 191 (2012) 551{562.

  • [19] Z. Guo, Q. Liu, J. Sun, B. Wu: Reaction-di_usion systems with p(x)-growth for image denoising. Nonlinear Anal. RWA 12 (2011) 2904{2918.

  • [20] J. R. King: Two generalization of the thin _lm equation. Math. Comput. Modeling 34 (2001) 737{756.

  • [21] J. Lions: Quelques Methodes de Resolution des Problems aux Limites Non lineaire. Dunod Editeur Gauthier Villars, Paris (1969).

  • [22] C. Liu: Some properties of solutions for the generalized thin _lm equation in one space dimension. Boletin de la Asociacion Matematica venezolana 12 (2005) 43{52.

  • [23] C. Liu, J. Yin, H. Gao: On the generalized thin _lm equation. Chin. Ann. Math. 25 (2004) 347{358.

  • [24] M. Ruzicka: Electrorheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin (2000).

  • [25] M. Xu, S. Zhou: Existence and uniqueness of weak solutions for a generalized thin _lm equation. Nonlinear Anal. 60 (2005) 755{774.

  • [26] M. Xu, S. Zhou: Stability and regularity of weak solutions for a generalized thin _lm equation. J. Math. Anal. Appl. 337 (2008) 49{60.

  • [27] A. Zang, Y. Fu: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal. 69 (2008) 3629{3636.

  • [28] C. Zhang, S. Zhou: A fourth-order degenerate parabolic equation with variable exponent. J. Part. Di_. Eq.(2009) 1{16.

  • [29] C. Zhang, S. Zhou: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data. J. Di_erential Equations 248 (2010) 1376{1400.

  • [30] S. Zhou: A priori L1-estimate and existence of weak solutions for some nonlinear parabolic equations. Nonlinear Anal. 42 (2000) 887{904.

OPEN ACCESS

Journal + Issues

Search