Integrals of logarithmic and hypergeometric functions

Open access

Abstract

Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.

References

  • [1] V. Adamchik, H. M. Srivastava: Some series of the zeta and related functions. Analysis 18 (2) (1998) 131-144.

  • [2] J. M. Borwein, I. J. Zucker, J. Boersma: The evaluation of character Euler double sums. Ramanujan J. 15 (2008) 377-405.

  • [3] J. Choi: Log-Sine and Log-Cosine Integrals. Honam Mathematical J 35 (2) (2013) 137-146.

  • [4] J. Choi, D. Cvijović: Values of the polygamma functions at rational arguments. J. Phys. A: Math. Theor. 40 (50) (2007) 15019{15028. Corrigendum, ibidem, 43 (2010), 239801 (1p).

  • [5] J. Choi: Finite summation formulas involving binomial coeficients, harmonic numbers and generalized harmonic numbers. J. Inequal. Appl. 49 (2013) 1-11.

  • [6] J. Choi, H. M. Srivastava: Some summation formulas involving harmonic numbers and generalized harmonic numbers. Math. Comput. Modelling. 54 (2011) 2220-2234.

  • [7] W. Chu: Summation formulae involving harmonic numbers. Filomat 26 (1) (2012) 143-152.

  • [8] O. Ciaurri, L. M. Navas, F. J. Ruiz, J. L. Varano: A simple computation of _(2k). Amer. Math. Monthly. 122 (5) (2015) 444-451.

  • [9] M. W. Coffey, N. Lubbers: On generalized harmonic number sums. Appl. Math. Comput. 217 (2010) 689-698.

  • [10] G. Dattoli, H. M. Srivastava: A note on harmonic numbers, umbral calculus and generating functions. Appl. Math. Lett. 21 (7) (2008) 686-693.

  • [11] A. Devoto, D. W. Duke: Table of integrals and formulae for Feynman diagram calculation. La Rivista del Nuovo Cimento 7 (6) (1984) 1-39.

  • [12] P. Flajolet, B. Salvy: Euler sums and contour integral representations. Exp. Math. 7 (1) (1998) 15-35.

  • [13] P. Freitas: Integrals of polylogarithmic functions, recurrence relations and associated Euler sums. Math. Comp. 74 (251) (2005) 1425-1440.

  • [14] K. Kölbig: The polygamma function (x) for x = 1=4 and x = 3=4. J. Comput. Appl. Math. 75 (1996) 43-46.

  • [15] H. Liu, W. Wang: Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transforms Spec. Funct. 23 (2012) 49-68.

  • [16] I Mező: Nonlinear Euler sums. Paci_c J. Math. 272 (1) (2014) 201-226.

  • [17] R. Sitaramachandrarao: A formula of S. Ramanujan. J. Number Theory 25 (1987) 1-19.

  • [18] A. Sofo: Computational Techniques for the Summation of Series. Kluwer Academic/Plenum Publishers, New York (2003).

  • [19] A. Sofo: Integral identities for sums. Math. Commun. 13 (2) (2008) 303-309.

  • [20] A. Sofo: Sums of derivatives of binomial coefficients. Adv. in Appl. Math. 42 (2009) 123-134.

  • [21] A. Sofo: Integral forms associated with harmonic numbers. Appl. Math. Comput. 207 (2) (2009) 365-372.

  • [22] A. Sofo, H. M. Srivastava: Identities for the harmonic numbers and binomial coeffcients. Ramanujan J. 25 (1) (2011) 93{113.

  • [23] A. Sofo: Summation formula involving harmonic numbers. Anal. Math. 37 (1) (2011) 51-64.

  • [24] A. Sofo: Quadratic alternating harmonic number sums. J. Number Theory 154 (2015) 144-159.

  • [25] H. M. Srivastava, J. Choi: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, London (2001).

  • [26] H. M. Srivastava, J. Choi: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam, London and New York (2012).

  • [27] W. Wang, C. Jia: Harmonic number identities via the Newton-Andrews method. Ramanujan J. 35 (2) (2014) 263-285.

  • [28] C. Wei, D. Gong: The derivative operator and harmonic number identities. Ramanujan J. 34 (3) (2014) 361-371.

  • [29] T. C. Wu, S. T. Tu, H. M. Srivastava: Some combinatorial series identities associated with the digamma function and harmonic numbers. Appl. Math. Lett. 13 (3) (2000) 101-106.

  • [30] D. Y. Zheng: Further summation formulae related to generalized harmonic numbers. J. Math. Anal. Appl. 335 (1) (2007) 692-706.

Journal Information


Mathematical Citation Quotient (MCQ) 2016: 0.28

Target Group

researchers in the fields of: algebraic structures, calculus of variations, combinatorics, control and optimization, cryptography, differential equations, differential geometry, fuzzy logic and fuzzy set theory, global analysis, mathematical physics and number theory

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 28
PDF Downloads 6 6 5