Toeplitz Quantization for Non-commutating Symbol Spaces such as SUq(2)

Open access


Toeplitz quantization is defined in a general setting in which the symbols are the elements of a possibly non-commutative algebra with a conjugation and a possibly degenerate inner product. We show that the quantum group SUq(2) is such an algebra. Unlike many quantization schemes, this Toeplitz quantization does not require a measure. The theory is based on the mathematical structures defined and studied in several recent papers of the author; those papers dealt with some specific examples of this new Toeplitz quantization. Annihilation and creation operators are defined as densely defined Toeplitz operators acting in a quantum Hilbert space, and their commutation relations are discussed. At this point Planck’s constant is introduced into the theory. Due to the possibility of non-commuting symbols, there are now two definitions for anti-Wick quantization; these two definitions are equivalent in the commutative case. The Toeplitz quantization introduced here satisfies one of these definitions, but not necessarily the other. This theory should be considered as a second quantization, since it quantizes non-commutative (that is, already quantum) objects. The quantization theory presented here has two essential features of a physically useful quantization: Planck’s constant and a Hilbert space where natural, densely defined operators act.


  • [1] S.T. Ali, M. Englis: Berezin-Toeplitz quantization over matrix domains. In: Contributions in Mathematical Physics: A Tribute to Gerard G. Emch, Eds. S.T. Ali and K.B. Sinha. Hindustan Book Agency, New Delhi, India (2007).

  • [2] S.T. Ali, M. Englis: Matrix-valued Berezin-Toeplitz quantization. J. Math. Phys. 48 (5) (2007) 053504, (14 pages). arXiv: math-ph/0611082

  • [3] V. Bargmann: On a Hilbert space of analytic functions and its associated integral transform, Part I. Commun. Pure Appl. Math. 14 (3) (1961) 187-214.

  • [4] M. El Baz, R. Fresneda, J.-P. Gazeau, Y. Hassouni: Coherent state quantization of paragrassmann algebras. J. Phys. A: Math. Theor. 43 (38) (2010) 385202 (15pp). Also see the Erratum for this article in arXiv:1004.4706v3

  • [5] F.A. Berezin: General Concept of Quantization. Commun. Math. Phys. 40 (1975) 153-174.

  • [6] C.A. Berger, L.A. Coburn: Toeplitz operators and quantum mechanics. J. Funct. Anal. 68 (1986) 273-299.

  • [7] C.A. Berger, L.A. Coburn: Toeplitz operators on the Segal-Bargmann space. Trans. Am. Math. Soc. 301 (1987) 813-829.

  • [8] D. Borthwick, S. Klimek, A. Lesniewski, M. Rinaldi: Matrix Cartan superdomains, super Toeplitz operators, and quantization. J. Funct. Anal. 127 (1995) 456-510. arXiv: hep-th/9406050

  • [9] A. Böttcher and B. Silbermann: Analysis of Toeplitz Operators. Springer (2006).

  • [10] J.-P. Gazeau: Coherent States in Quantum Physics. Wiley-VCH (2009).

  • [11] B.C. Hall: Holomorphic methods in analysis and mathematical physics, First Summer School in Analysis and Mathematical Physics, Eds. S. Pérez-Esteva and C. Villegas-Blas. In: Contemp. Math.. Am. Math. Soc. (2000) 1-59.

  • [12] C. Iuliu-Lazaroiu, D. McNamee, C. Sämann: Generalized Berezin-Toeplitz quantization of Kähler supermanifolds. J. High Energy Phys. 2009 (05) (2009). 055, arXiv: 0811.4743v2

  • [13] A. Yu. Karlovich: Higher order asymptotic formulas for Toeplitz matrices with symbols in generalized Hölder spaces. In: Operator Algebras, Operator Theory and Applications, Eds. Maria Amélia Bastos et al. Birkhäuser (2008) 207-228. arXiv: 0705.0432

  • [14] A. Yu. Karlovich: Asymptotics of Toeplitz Matrices with Symbols in Some Generalized Krein Algebras. In: Modern Anal. Appl. Springer (2009) 341-359. arXiv: 0803.3767

  • [15] R. Kerr: Products of Toeplitz Operators on a Vector Valued Bergman Space. Integral Equations Operator Theory 66 (3) (2010) 571-584. arXiv:0804.4234

  • [16] E.H. Lieb: The classical limit of quantum spin systems. Commun. Math. Phys. 31 (4) (1973) 327-340.

  • [17] Yu.I. Manin: Topics in Noncommutative Geometry. Princeton University Press (1991).

  • [18] R.A. Martínez-Avendaño and P. Rosenthal: An Introduction to Operators on the Hardy-Hilbert space. Springer (2007).

  • [19] M. Reed and B. Simon: Mathematical Methods of Modern Physics, Vol. I: Functional Analysis. Academic Press (1972).

  • [20] M. Reed and B. Simon: Mathematical Methods of Modern Physics, Vol. II: Fourier Analysis, Self-Adjointness. Academic Press (1975).

  • [21] S.B. Sontz: A Reproducing Kernel and Toeplitz Operators in the Quantum Plane. Communications in Mathematics 21 (2) (2013) 137-160. arXiv:1305.6986

  • [22] S.B. Sontz: Paragrassmann Algebras as Quantum Spaces, Part I: Reproducing Kernels. In: Geometric Methods in Physics. XXXI Workshop 2012. Trends in Mathematics, Eds. P. Kielanowski et al.. Birkhäuser (2013) 47-63.

  • [23] S.B. Sontz: Toeplitz Quantization without Measure or Inner Product. In: Geometric Methods in Physics. XXXII Workshop 2013. Trends in Mathematics. (2014) 57-66.

  • [24] S.B. Sontz: Paragrassmann Algebras as Quantum Spaces, Part II: Toeplitz Operators. Journal of Operator Theory 71 (2014) 411-426. arXiv:1205.5493, doi:

  • [25] T. Timmermann: An invitation to quantum groups and duality: From Hopf algebras to multiplicative unitaries and beyond. Euro. Math. Soc. (2008).

Journal Information

Mathematical Citation Quotient (MCQ) 2016: 0.28

Target Group

researchers in the fields of: algebraic structures, calculus of variations, combinatorics, control and optimization, cryptography, differential equations, differential geometry, fuzzy logic and fuzzy set theory, global analysis, mathematical physics and number theory


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 17
PDF Downloads 6 6 5