Behavioral observations of the endangered Rio Grande silvery minnow in a conservation aquaculture facility

Open access

Abstract

A major reason why conservation aquaculture is needed to improve the success of aquaculture-assisted fisheries is that traditional production aquaculture produces fish with mal-adaptive behaviors. These behaviors can be produced via domestication and culture techniques, and preventing these mal-adaptive behaviors requires integrating improvements in genetic management and culture protocols. The genetic protocols needed to minimize hatchery-induced genetic changes have received considerable attention, but changing the way fish are raised has received less effort. Conservation aquaculture cultures fish in environments that resemble their native habitats so that when stocked, they behave like wild fish rather than hatchery fish. A purpose built-conservation aquaculture facility can also be used to learn about a species’ behavior and how it reacts to changes in the environment, something which can be difficult or expensive to study in the wild. These observations can then be used to help direct both propagation and recovery management. This paper provides the rationale for why genetic management, culture systems, and management practices need to be altered to produce fish that are behaviorally similar to wild fish for aquaculture-assisted fisheries programs. It then provides a description of some of the behaviors of the endangered Rio Grande silvery minnow Hybognathus amarus that were observed at the Los Lunas Silvery Minnow Refugium, a purpose-built conservation aquaculture facility, and explains how some of these behaviors can be used in culture and recovery management. Behaviors described are: schooling; predator avoidance; feeding behavior; use of vegetation for cover and predator avoidance; habitat use by bottom substrate; location in the water column; upstream movement via a fish ladder; movement upstream in a high-velocity channel; response to changes in water level; spawning behavior; seine avoidance; and Kaah-chee-nyee Srkaash, a behavior described for the first time.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Álvarez D. Nicieza A.G. (2003): Predator avoidance behaviour in wild and hatchery-reared brown trout: the role of experience and domestication. Journal of Fish Biology 63 1565-1577.

  • Araki H. Schmid C. (2010): Is hatchery stocking a help or harm? Evidence limitations and future directions in ecological and genetic surveys. Aquaculture 308 S2-S11.

  • Araki H. Cooper B. Blouin M.S. (2007): Genetic effects of captive breeding cause a rapid cumulative fitness decline in the wild. Science 318 100-103.

  • Araki H. Berejerkian B.A. Ford M.J. Blouin M.S. (2008): Fitness of hatchery-reared salmonids in the wild. Evolutionary Applications 1 342-355.

  • Araki H. Cooper B. Blouin M.S. (2009): Carry-over effect of captive breeding reduces reproductive fitness of wildborn descendants in the wild. Biology Letters 5 621-624.

  • Bellinger K.L. Thorgaard G.H. Carter P.A. (2014): Domestication is associated with reduced burst swimming performance and increased body size in clonal rainbow trout lines. Aquaculture 420-421 154-159.

  • Berejikian B.A. Smith R.J.F. Tezak E.P. Schroder S.L. Knudsen C.M. (1999): Chemical alarm signals and complex hatchery rearing habitats affect antipredator behavior and survival of chinook salmon (Oncorhynchus tshawytscha) juveniles. Canadian Journal of Fisheries and Aquatic Sciences 56 830-838.

  • Berejikian B.A. Tezak E.P. LaRae A.L. (2003): Innate and enhanced predator recognition in hatchery-reared chinook salmon. Environmental Biology of Fishes 67 241-251.

  • Bestgen K.R. Mefford B. Bundy J.M. Walford C.D. Compton R.I. (2010): Swimming performance and fishway model passage success of Rio Grande silvery minnow. Transactions of the American Fisheries Society 139 433-448.

  • Biro P.A. Abrahams M.V. Post J.R. Parkinson E.A. (2004): Predators select against high growth rates and risk-taking behaviour in domestic trout populations. Proceedings of the Royal Society B 271 2233-2237.

  • Bixby R. Burdett A. (2013): Resource utilization of the Rio Grande silvery minnow at the Los Lunas Silvery Minnow Refugium. Prepared for the Interstate Stream Commission Santa Fe New Mexico. Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque NM USA 43 pp. http://www.ose.state.nm.us/LLSMR/reports/Bixby_and_Burdett_Food-Gut_2011_study.pdf

  • Bixby R. Burdett A. (2014): Resource utilization of the Rio Grande silvery minnow at the Los Lunas Silvery Minnow Refugium. Prepared for the Interstate Stream Commission Santa Fe New Mexico. Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque NM USA 42 pp. http://www.ose.state.nm.us/LLSMR/reports/Bixby_and_Burdett_Food-Gut_2012_study.pdf

  • Bowlby H.D. Gibson A.J.F. (2011): Reduction in fitness limits the useful duration of supplementary rearing in an endangered salmon population. Ecological Applications 21 3032-3048.

  • Bowles E.C. (1995): Supplementation: Panacea or curse for the recovery of declining fish stocks? American Fisheries Society Symposium 15 277-283.

  • Braithwaite V.A. Salvanes A.G.V. (2005): Environmental variability in the early rearing environment generates behaviourally flexible cod: implications for rehabilitating wild populations. Proceedings of the Royal Society B 272 1107-1113.

  • Brockmark S. Adriaenssens B. Johnsson J.I. (2010): Less is more: density influences the development of behavioural life skills in trout. Proceedings of the Royal Society B 277 3035-3043.

  • Brown C. Day R.L. (2002): The future of stock enhancements: lessons for hatchery practice from conservation biology. Fish and Fisheries 3 79-94.

  • Brown C. Laland K. (2001): Social learning and life skills training for hatchery reared fish. Journal of Fish Biology 59 471-493.

  • Brown C. Laland K. (2003): Social learning in fishes: a review. Fish and Fisheries 4 280-288.

  • Brown C. Davidson T. Laland K. (2003a): Environmental enrichment and prior experience of live prey improve foraging behavior in hatchery-reared Atlantic salmon. Journal of Fish Biology 63 (Supplement A) 187-196.

  • Brown C. Markula A. Laland K. (2003b): Social learning of prey location in hatchery-reared Atlantic salmon. Journal of Fish Biology 63 738-745. Brown C. Laland K. Krause J. (2006): Fish cognition and behavior. Blackwell Publishing Oxford UK 328 pp.

  • Chilcote M.W. Leider S.A. Loch J.J. (1986): Differential reproductive success of hatchery and wild summer-run steelhead under natural conditions. Transactions of the American Fisheries Society 115 726-735.

  • Chilcote M.W. Goodson K.W. Falcy M.R. (2011): Reduced recruitment performance in natural populations of anadromous salmonids associated with hatchery-reared fish. Canadian Journal of Fisheries and Aquatics Sciences 68 511-522.

  • Christie M.R. Marine M.L. French R.A. Waples R.S. Blouin M.S. (2012a): Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109 254-260.

  • Christie M.R. Marine M.L. French R.A. Blouin M.S. (2012b): Genetic adaptation to captivity can occur in a single generation. Proceedings of the National Academy of Science 109 238–242.

  • Christie M.R. French R.A. Marine M.L. Blouin M.S. (2014): How much does inbreeding contribute to the reduced fitness of hatchery-born steelhead (Oncorhynchus mykiss) in the wild? Journal of Heredity 105 111-119.

  • Christie M.R. Marine M.L. Fox S.E. French R.A. Blouin M.S. (2016): A single generation of domestication heritably alters the expression of hundreds of genes. Nature Communications 7 10676.

  • Coleman R. Hutson A.M. Toya L.A. Tave D. (2011): Using native plants to provide natural ecosystem functions in a conservation fish hatchery. Native Plants Journal 12 216-225.

  • Couzin I.D. James R. Mawdsley D. Croft D.P. Krause J. (2006): Social organization and information transfer in schooling fishes. pp 166-185.

  • Brown C. Laland K. Krause J. (eds). Fish cognition and behavior. Blackwell Publishing Oxford UK.

  • Cowley D.E. Shirey P.D. Hatch M.D. (2006): Ecology of the Rio Grande silvery minnow (Cyprinidae: Hybognathus amarus) inferred from specimens collected in 1874. Reviews in Fisheries Science 14 111-125.

  • Crawford C.S. Ellis L.M. Molles Jr. M.C. (1996): The Middle Rio Grande Bosque: an endangered ecosystem. New Mexico Journal of Science 36 276-299.

  • de Mestral L.G. O’Reilly P.T. Jones R. Flanagan J. Herbinger C.M. (2013): Preliminary assessment of the environmental and selective effects of a captive breeding and rearing programme for endangered Atlantic salmon Salmo salar. Fisheries Management and Ecology 20 75-89.

  • Doyle R.W. (1983): An approach to the quantitative analysis of domestication selection in aquaculture. Aquaculture 33 167-185.

  • Doyle R.W. Herbinger C. (1994): The use of DNA fingerprinting for high-intensity within-family selection in fish breeding. Proceedings of the 5th World Congress Genetics Applied to Livestock Production Guelph Ontario Canada 19 364-371.

  • Doyle R.W. Herbinger C. Taggart C.T. Lochmann S. (1995): Use of DNA microsatellite polymorphism to analyze genetic correlations between hatchery and natural fitness. American Fisheries Society Symposium 15 205-211.

  • Doyle R.W. Perez-Enriquez R. Takagi M. Taniguchi N. (2001): Selective recovery of founder genetic diversity in aquacultural broodstocks and captive endangered fish populations. Genetica 111 291-304.

  • Einum S. Fleming I.A. (1997): Genetic divergence and interactions in the wild among native farmed and hybrid Atlantic salmon. Journal of Fish Biology 50 634-651.

  • Einum S. Fleming I.A. (2001): Implications of stocking: Ecological interactions between wild and released salmonids. Nordic Journal of Freshwater Research 75 56-70.

  • Elliott J.M. (1977): Some methods for the statistical analysis of samples of benthic invertebrates 2nd ed. Scientific Publication No. 25 Freshwater Biological Association The Ferry House Ambleside Cumbria UK 156 pp.

  • Ellis T. Hughes R.N. Howell B.R. (2002): Artificial dietary regime many impair subsequent foraging behavior of hatchery-reared turbot released into the natural environment. Journal of Fish Biology 61 252-264.

  • Evans M.L. Wilke N.F. O’Reilly P.T. Fleming I.A. (2014): Transgenerational effects of parental rearing environment influence the survivorship of captive-born offspring in the wild. Conservation Letters 7 371-379.

  • Evans M.L. Hori T.S. Rise M.L. Fleming I.A. (2015): Transcriptomic responses of Atlantic salmon (Salmo salar) to environmental enrichment during juvenile rearing. PLoS One 10(3) e0118378.

  • Fern A. Huse G. Jakobsen P.J. Kristiansen T.S. (2006): The role of fish learning skills in fisheries and aquaculture. pp 278-310. In: Brown C. Laland K. Krause J. (eds). Fish cognition and behavior. Blackwell Publishing Oxford UK.

  • Feuerbacher O. Bonar S.A. Barrett P.J. (2016): Design and testing of a mesocosm-scale habitat for culturing the endangered Devils Hole pupfish. North American Journal of Aquaculture 78 259-269.

  • Fisch K.M. Ivy J.A. Burton R.S. May B. (2013): Evaluating the performance of captive breeding techniques for conservation hatcheries: A case study of the delta smelt captive breeding program. Journal of Heredity 104 92-104.

  • Fisch K.M. Kozfkay C.C. Ivy J.A. Ryder O.A. Waples R.S. (2015): Fish hatchery genetic management techniques: Integrating theory with implementation. North American Journal of Aquaculture 77 343-357.

  • Flagg T.A. Mobrand L.E. (2010): Conservation aquaculture: Approaches for hatchery reform. Bulletin of Fisheries Research Agency (Japan) 29 85-91.

  • Flagg T.A. Nash C.E. (1999): A conceptual framework for conservation hatchery strategies for Pacific salmonids. U.S. Department of Commerce NOAA Technical Memo NMFS-NWFCS-38 44 pp. https://www.nwfsc.noaa.gov/assets/25/5377_06172004_101351_tm38.pdf

  • Flagg T.A. Mahnken C.V.W. Iwamoto R.I. (2004): Conservation hatchery protocols for Pacific salmon. American Fisheries Society Symposium 44 603-619.

  • Fleming I.A. Einum S. (1997): Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication. ICES Journal of Marine Science 54 1051-1063.

  • Fleming I.A. Lamberg A. Jonsson B. (1997): Effects of early experience on the reproductive performance of Atlantic salmon. Behavioral Ecology 8 470-480.

  • Frankham R. (2008): Genetic adaptation to captivity in species conservation programs. Molecular Ecology 17 325-333.

  • Fraser D.J. (2008): How well can captive breeding programs conserve biodiversity? A review of salmonids. Evolutionary Applications 1 535-586.

  • Fraser J.M. (1981): Comparative survival and growth of planted wild hybrid and domestic strains of brook trout (Salvelinus fontinalis) in Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 38 1672-1684.

  • Fu S-J. (2015): Flow and stress acclimation both enhance predator avoidance in a common cyprinid fish. Aquatic Biology 24 1-8.

  • Furuta S. (1996): Predation on juvenile Japanese founder (Paralichthys olivaceus) by diurnal piscivorous fish: Field observations and laboratory experiments. pp 285-294. In: Watanabe Y. Yamashita Y. Oozeki Y. (eds). Survival strategies in early life stages of marine resources. A.A. Balkema Rotterdam.

  • Gallagher A.J. Lawrence M.J. Jain-Schlaepfer S.M.R. Wilson A.D.M. Cooke S.J. (2016): Avian predators transmit fear along the air-water interface influencing prey and their parental care. Canadian Journal of Zoology 94 863-870.

  • Gazdewich K.J. Chivers D.P. (2002): Acquired predator recognition by fathead minnows: influence of habitat characteristics on survival. Journal of Chemical Ecology 28 439-445.

  • Gonzales E.J. Tave D. Haggerty G.M. (2014): Endangered Rio Grande silvery minnow use constructed floodplain habitat. Ecohydrology 7 1087-1093.

  • Griffin A.S. (2004): Social learning about predators: A review and prospectus. Learning & Behavior 32 131-140.

  • Harada Y. Yokota M. Iizuka M. (1998): Genetic risk of domestication in artificial fish stocking and its possible reduction. Researches on Population Ecology 40 311-324.

  • Härkönen L. Hyvärinen P. Paappanen J. Vainikka A. (2014): Explorative behavior increases vulnerability to angling in hatchery-reared brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 71 1-10.

  • Heath D.D. Heath J.W. Bryden C.A. Johnson R.M. Fox C.W. (2003): Rapid evolution of egg size in captive salmon. Science 299 1738-1740.

  • Hindar K. Ryman N. Utter F. (1991): Genetic effects of cultured fish on natural fish populations. Canadian Journal of Fisheries and Aquatic Sciences 48 945-957.

  • Hogan B.G. Scott-Samuel N.E. Cuthill I.C. (2016): Contrast contours and the confusion effect in dazzle camouflage. Royal Society Open Science 3 160180.

  • Hossain M.A.R. Tanaka M. Masuda R. (2002): Predatorprey interaction between hatchery-reared Japanese flounder juvenile Paralichthys olivaceus and sandy shore crab Matuta lunaris: daily rhythms anti-predator conditioning and starvation. Journal of Experimental Marine Biology and Ecology 267 1-14.

  • Hubert W.A. Fabrizio M.C. (2007): Relative abundance and catch per unit effort. pp 279-325. In: Guy C.S. Brown M.L. (eds). Analysis and interpretation of freshwater fisheries data. American Fisheries Society Bethesda MD USA.

  • Huntingford F. Jobling M. Kadri S. (Eds). (2012a): Aquaculture and behavior. Wiley-Blackwell Chichester West Sussex UK 340 pp.

  • Huntingford F. Kadri S. Jobling M. (2012b): Introduction: Aquaculture and behavior. pp 1-35. In: Huntingford F. Jobling M. Kadri S. (eds). Aquaculture and behavior. Wiley-Blackwell Chichester West Sussex UK.

  • Huntingford F. Hunter W. Braithwaite V. (2012c): Movement and orientation. pp 87-120. In: Huntingford F. Jobling M. Kadri S. (eds). Aquaculture and behavior. Wiley-Blackwell Chichester West Sussex UK.

  • Huntingford F. Jobling M. Kadri S. (2012d): Conclusions: Aquaculture and behaviour. pp 322-332. In: Huntingford F. Jobling M. Kadri S. (eds). Aquaculture and behavior. Wiley-Blackwell Chichester West Sussex UK.

  • Huntingford F. Coyle S. Hunter W. (2012e): Avoiding predators. pp. 220-247. In: Huntingford F. Jobling M. Kadri S. (eds). Aquaculture and behavior. Wiley-Blackwell Chichester West Sussex UK.

  • Hutson A.M. Toya L.A. Tave D. (2012): Production of the endangered Rio Grande silvery minnow Hybognathus amarus in the conservation rearing facility at the Los Lunas Silvery Minnow Refugium. Journal of the World Aquaculture Society 43 84-90.

  • Hutson A.M. Toya L.A. Tave D. (2013): Effect of high stocking rates on growth and survival of the endangered Rio Grande silvery minnow Hybognathus amarus. Korean Journal of Fisheries and Aquatic Sciences 16 285-290.

  • Hutson A.M. Toya L.A. Tave D. Porter M.D. (2017): Lower lethal temperature of the endangered Rio Grande silvery minnow and its implications for propagation and reintroduction. Journal of Applied Aquaculture 29 117-125.

  • Hutson A.M. Toya L.A. Tave D. (in press): Determining preferred spawning habitat of the endangered Rio Grande silvery minnow by hydrological manipulation of a conservation aquaculture facility and the implications for management. Ecohydrology.

  • Hynes J.D. Brown Jr. E.H. Helle J.H. Ryman N. Webster D.A. (1981): Guidelines for the culture of fish stocks for resource management. Canadian Journal of Fisheries and Aquatic Sciences 38 1867-1876.

  • Jackson C.D. Brown G.E. (2011): Differences in antipredator behaviour between wild and hatchery-reared juvenile Atlantic salmon (Salmo salar) under seminatural conditions. Canadian Journal of Fisheries and Aquatic Sciences 68 2157-2165.

  • Johnsson J.I. Petersson E. Jönsson E. Björnsson B.T. Järvi T. (1996): Domestication and growth hormone alter antipredator behaviour and growth patterns in juvenile brown trout Salmo trutta. Canadian Journal of Fisheries and Aquatic Sciences 53 1546-1554.

  • Jonsson B. Jonsson N. (2016): Trans-generational maternal effect: temperature influences egg size of the offspring in Atlantic salmon Salmo salar. Journal of Fish Biology 89 1482-1487.

  • Keller W.T. Plosila D.S. (1981): Comparison of domestic hybrid and wild strains of brook trout in a pond fishery. New York Fish and Game Journal 28 123-137.

  • Kern E.M.A. Robinson D. Gass E. Godwin J. Langerhans R.B. (2016): Correlated evolution of personality morphology and performance. Animal Behaviour 117 79-86.

  • Kihslinger R.L. Nevitt G.A. (2006): Early rearing environment impacts cerebellar growth in juvenile salmon. The Journal of Experimental Biology 209 504-509.

  • Kopack C.J. Broder E.D. Lepak J.M. Fetherman E.R. Angeloni L.M. (2015): Behavioral responses of a highly domesticated predator naïve rainbow trout to chemical cues of predation. Fisheries Research 169 1-7.

  • Leider S.A. Hulett P.L. Loch J.J. Chilcote M.W. (1990): Electrophoretic comparison of the reproductive success of naturally spawned transplanted and wild steelhead trout through the returning adult stage. Aquaculture 88 239-252.

  • Lema S.C. Hodges M.J. Marchetti M.P. Nevitt G.A. (2005): Proliferation zones in the salmon telencephalon and evidence for environmental influence on proliferation rate. Comparative Biochemistry and Physiology Part A 141 327-335.

  • Lindberg J.C. Tigan G. Ellison L. Rettinghouse T. Nagel M.M. Fisch K.M. (2013): Aquaculture methods for a genetically managed population of endangered delta smelt. North American Journal of Aquaculture 75 186-196.

  • Lorenzen K. Beveridge M.C.M. Mangel M. (2012): Cultured fish: integrative biology and management of domestication and interactions with wild fish. Biological Reviews 87 639-660.

  • Lynch M. O’Hely M. (2001): Captive breeding and the genetic fitness of natural populations. Conservation Genetics 2 363-378.

  • Magaña H.A. (2012): Habitat use of the Rio Grande silvery minnow (Hybognathus amarus) during a long-term flood pulse in the Middle Rio Grande New Mexico. Environmental Biology of Fishes 95 201–212.

  • Mayer I. Meager J. Skjæraasen J.E. Rodewald P. Sverdrup G. Fern A. (2011): Domestication causes rapid changes in heart and brain morphology in Atlantic cod (Gadus morhua). Environmental Biology of Fishes 92 181-186.

  • Maynard D.J. Flagg T.A. Mahnken C.V.W. (1995): A review of seminatural culture strategies for enhancing the postrelease survival of anadromous salmonids. American Fisheries Society Symposium 15 307-314.

  • Maynard D.J. Flagg T.A. Mahnken C.V.W. Schroder S.L. (1996a): Natural rearing technologies for increasing postrelease survival of hatchery-reared salmon. Bulletin of the National Research Institute of Aquaculture Supplement 2 71-77.

  • Maynard D.J. McDowell G.C. Tezak E.P. Flagg T.A. (1996b): Effect of diets supplemented with live food on the foraging behavior of cultured fall chinook salmon. The Progressive Fish-Culturist 58 187-191.

  • Maynard D.J. LaRae A. McDowell G.C. Snell G.A. Flagg T.A. Mahnken C.V.W. (1998): Predator avoidance training can increase post-release survival of chinook salmon. pp 59-82. In: Smith R.Z. (ed). Proceedings of the 48th annual Pacific northwest fish culture conference. Gold Beach OR USA.

  • Maynard D.J. Flagg T.A. Iwamoto R.N. Mahnken C.V.W. (2004a): A review of recent studies investigating seminatural rearing strategies as a tool for increasing Pacific salmon postrelease survival. American Fisheries Society Symposium 44 573-584.

  • Maynard D Riley S. Flagg T. Iwamoto R. Mahnken C. Berejikian B. Tatara C. Endicott R. Atkins J. Scheurer J. LaRae A. Colt J. Dixon J. McDowell G. Vander Hagen G. (2004b): Development of a natural rearing system to improve supplemental fish quality. 2004 Final Report Project No. 199105500 BPA Report DOE/BP-00004768-2. Bonneville Power Administration Portland OR USA 174 pp. http://docs.streamnetlibrary.org/BPA_Fish_and_Wildlife/00004768-2.pdf.

  • McGhee K.E. Bell A.M. (2014): Parental care in a fish: epigenetics and fitness enhancing effects on offspring anxiety. Proceeding of the Royal Society B 281 20141146.

  • Medley C.N. Shirey P.D. (2013): Review and reinterpretation of Rio Grande silvery minnow reproductive ecology using egg biology life history hydrology and geomorphology information. Ecohydrology 6 491-505.

  • Metcalfe N.B. Valdimarsson S.V. Morgan I.J. (2003): The relative roles of domestication rearing environment prior residence and body size in deciding territorial contests between hatchery and wild juvenile salmon. Journal of Applied Ecology 40 535-544.

  • Milot E. Perrier C. Papillon L. Dodson J.J. Bernatchez L. (2013): Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. Evolutionary Applications 6 472–485.

  • Moghadam H. Mørkøre T. Robinson N. (2015): Epigenetics—Potential for programming fish for aquaculture? Journal of Marine Science and Engineering 3 175-192.

  • Moore M. Berejikian B.A. Tezak E.P. (2012): Variation in the early marine survival and behavior of natural and hatchery-reared Hood Canal steelhead. PLoS One 7(11) e49645.

  • Moyle P.B. (1969): Comparative behavior of young brook trout of domestic and wild origin. The Progressive Fish-Culturist 31 51-56.

  • Murphy B.R. Willis D.W. (Eds). (1996): Fisheries techniques 2nd ed. American Fisheries Society Bethesda MD USA 732 pp.

  • Nickum M.J. Mazik P.M. Nickum J.G. MacKinlay. (Eds.) (2004): Propagated fish in resource management. American Fisheries Society Symposium 44 American Fisheries Society Bethesda MD USA 640 pp.

  • Olla B.L. Davis M.W. Ryer C.H. (1998): Understanding how the hatchery environment represses or promotes the development of behavioral survival skills. Bulletin of Marine Science 62 531-550.

  • Olson J.A. Olson J.M. Walsh R.E. Wisenden B.D. (2012): A method to train groups of predator-naive fish to recognize and respond to predators when released into the natural environment. North American Journal of Fisheries Management 32 77-81.

  • Orlov A.V. Gerasimov Y.V. Lapshin O.M. (2006): The feeding behavior of cultured and wild Atlantic salmon Salmo salar L. in Louvenga River Kola Peninsula Russia. ICES Journal of Marine Science 63 1297-1303.

  • Pease A.A. Davis J.J. Edwards M.S. Turner T.F. (2006): Habitat and resource use by larval and juvenile fishes in an arid-land river (Rio Grande New Mexico). Freshwater Biology 51 475-486.

  • Phillips. F.M. Hall G.E. Black M.E. (2011): Reining in the Rio Grande. University of New Mexico Press Albuquerque NM USA 252 pp.

  • Platania S.P. Altenbach C.S. (1998): Reproductive strategies and egg types of seven Rio Grande basin cyprinids. Copeia 1998 599-569.

  • Powell M.S. Hardy R.W. Hutson A.M. Toya A.M. Tave D. (2017): Comparison of body composition and fatty acid profiles between wild and cultured Rio Grande silvery minnow. Journal of Fish and Wildlife Management DOI 10.3996/072016-JFWM-055

  • Raney E.C. (1939): The breeding habits of the silvery minnow Hybognathus regius Girard. American Midland Naturalist 21 674-680.

  • Reisenbichler R.R. McIntyre J.D. (1977): Genetic differences in growth and survival of juvenile hatchery and wild steelhead trout Salmo gairdneri. Journal of the Fisheries Research Board of Canada 34 123-128.

  • Reisenbichler R.R. Rubin S.P. (1999): Genetic changes from artificial propagation of Pacific salmon affect productivity and viability of supplemental populations. ICES Journal of Marine Science 56 459-466.

  • Roberts L.J. Taylor J. de Leaniz C.G. (2011): Environmental enrichment reduces maladaptive risk-taking behavior in salmon reared for conservation. Biological Conservation 144 1972-1979.

  • Ruxton G.D. Jackson A.L. Tosh C.R. (2007): Confusion of predators does not rely on specialist coordinated behavior. Behavioral Ecology 18 590-596.

  • Ruzzante D.E. (1994): Domestication effects on aggressive and schooling behavior in fish. Aquaculture 120 1-24.

  • Ryman N. Laikre L. (1991): Effects of supportive breeding on the genetically effective population size. Conservation Biology 5 325-329.

  • Salinas S. Munch S.B. (2012): Thermal legacies: transgenerational effects of temperature on growth in a vertebrate. Ecology Letters 15 159-163.

  • Salvanes A.G.V. Moberg O. Ebbesson L.O.E. Nilsen T.O. Jensen K.H. Braithwaite V.A. (2013): Environmental enrichment promotes neural plasticity and cognitive ability in fish. Proceedings of the Royal Society B 280 20131331.

  • Scheurer J.A. Fausch K.D. Bestgen K.R. (2003): Multiscale processes regulate brassy minnow persistence in a Great Plains river. Transactions of the American Fisheries Society 132 840-855.

  • Schramm Jr. H.L. Piper R.G. (Eds.) (1995): Uses and effects of cultured fishes in aquatic ecosystems. American Fisheries Society Symposium 15 American Fisheries Society Bethesda MD USA 608 pp.

  • Shao C. Li Q. Chen S. Zhang P. Lian J. Hu Q. Sun B. Jin L. Liu S. Wang Z. Zhao H. Jin Z. Liang Z. Li Y. Zheng Q. Zhang Y. Wang J. Zhang G. (2014): Epigenetic modification and inheritance in sexual reversal of fish. Genome Research 24 604-615.

  • Shirey P.D. Cowley D.E. Sallenave R. (2008): Diatoms from gut contents of museum specimens of an endangered minnow suggest long-tem ecological changes in the Rio Grande (USA). Journal of Paleolimnology 40 263-272.

  • Stunz G.W. Minello T.J. (2001): Habitat-related predation on juvenile wild-caught and hatchery-reared red drum Sciaenops ocellatus (Linnaeus). Journal of Experimental Marine Biology and Ecology 260 13-25.

  • Suboski M.D. Templeton J.J. (1989): Life skills training for hatchery fish: social learning and survival. Fisheries Research 7 343-352.

  • Sundström L.F. Johnsson J.I. (2001): Experience and social environment influence the ability of young brown trout to forage on live novel feed. Animal Behaviour 61 249-255.

  • Sundström L.F. Lõhmus M. Johnsson J.I. (2003): Investment in territorial defence depends on rearing environment in brown trout (Salmo trutta). Behavioral Ecology and Sociobiology 54 249-255.

  • Sundström L.F. Petersson E. Höjesjö J. Johnsson J.I. Järvi T. (2004): Hatchery selection promotes boldness in newly hatched brown trout (Salmo trutta): implications for dominance. Behavioral Ecology 15 192-198.

  • SWCA Environmental Consultants (2015): Main channel fisheries monitoring – year two draft report metrics for adaptive management of habitat restoration sites for the Rio Grande silvery minnow. Prepared for U.S. Army Corps of Engineers—Albuquerque District. SWCA Environmental Consultants Albuquerque NM USA 132 pp.

  • Tave D. (1984): Effective breeding efficiency: An index to quantify the effects that different breeding programs and sex ratios have on inbreeding and genetic drift. The Progressive Fish-Culturist 46 262-268.

  • Tave D. (1993): Genetics for fish hatchery managers 2nd ed. Van Nostrand Reinhold New York NY USA 415 pp.

  • Tave D. (1995): Selective breeding programmes for medium-sized fish farms. Food and Agriculture Organization of the United Nations Rome Italy 122 pp.

  • Tave D. (1999): Inbreeding and brood stock management. Food and Agriculture Organization of the United Nations Rome Italy 122 pp.

  • Tave D. Haggerty G. Medley C.N. Hutson A.M. Ferjancic K.P. (2011): Los Lunas silvery minnow refugium: a conservation hatchery. World Aquaculture 42 28-34 67.

  • Tave D. Valenzuela L. Toya L. Hutson A.M. (2012): New design for airlift pump used in fish culture tanks with the endangered Rio Grande silvery minnow (Hybognathus amarus). Croatian Journal of Fisheries 70 83-91.

  • Thompson B.C. Porak W.F. Leone E.H. Allen M.S. 2016. Using radiotelemetry to compare the initial behavior and mortality of hatchery-reared and wild juvenile Florida bass. Transactions of the American Fisheries Society 145 374-385.

  • Thompson N.F. Blouin M.S. (2015): The effects of high rearing density on the potential for domestication selection in hatchery culture of steelhead (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences 72 1-6.

  • Uchida K. Tsukamoto K. Ishii S. Ishida R. Kajihara T. (1989): Larval competition for food between wild and hatchery-reared ayu (Plecoglossus altivelis) Temminck et Schlegel in culture ponds. Journal of Fish Biology 34 399-407.

  • USFWS (U.S. Fish and Wildlife Service). (2003): Biological and conference opinions on the effects of actions associated with the programmatic biological assessment of Bureau of Reclamation’s water and river maintenance operations Army Corps of Engineers’ flood control operation and related non-federal actions on the Middle Rio Grande New Mexico. U.S. Fish and Wildlife Service Albuquerque NM USA 128 pp. https://www.fws.gov/southwest/es/newmexico/documents/BO/2003-0129%20Middle%20Rio%20Grande%20Water%20Ops%20BO.pdf

  • USFWS (U.S. Fish and Wildlife Service). (2010): Rio Grande silvery minnow (Hybognathus amarus) recovery plan. First revision. Albuquerque NM USA 221 pp. https://www.fws.gov/southwest/es/Documents/R2ES/Rio_Grande_Silvery_Minnow_Recovery_Plan_First_Revision.pdf

  • Vilhunen S. (2006): Repeated antipredator conditioning: a pathway to habituation or to better avoidance? Journal of Fish Biology 68 25-43.

  • Vincent R.E. (1960): Some influences of domestication upon three stocks of brook trout (Salvelinus fontinalis Mitchill). Transactions of the American Fisheries Society 89 35-52.

  • Wales J.H. (1954): Relative survival of hatchery and wild trout. The Progressive Fish-Culturist 16 125-127.

  • Waters C. D. Hard J.J. Brieuc M.S.O. Fast D.E. Warheit K.I. Waples R.S. Knudsen C.M. Bosch W.J. Naish K.A. (2015): Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding. Evolutionary Applications 8 956-971.

  • Watson J.M. Sykes C. Bonner T.H. (2009): Foods of age- 0 Rio Grande silvery minnows (Hybognathus amarus) reared in hatchery ponds. The Southwest Naturalist 54 475-479.

  • Wilke N.F. O’Reilly P.T. MacDonald D. Fleming I.A. (2015): Can conservation-oriented captive breeding limit behavioural and growth divergence between offspring of wild and captive origin Atlantic salmon (Salmo salar)? Ecology of Freshwater Fish 24 293-304.

  • Wintzer A.P. Motta P.J. (2005): A comparison of prey capture kinematics in hatchery and wild Micropterus salmoides floridanus: effects of ontogeny and experience. Journal of Fish Biology 67 409-427.

  • Yeates S.E. Einum S. Fleming I.A. Holt W.V. Gage M.J.G. (2014): Assessing risks of invasion through gamete performance: farm Atlantic salmon sperm and eggs show equivalence in function fertility compatibility and competitiveness to wild Atlantic salmon. Evolutionary Applications 7 493-505.

Search
Journal information
Impact Factor


CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.195
Source Normalized Impact per Paper (SNIP) 2018: 0.772

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 157 5
PDF Downloads 109 71 1