EEG data processing with neural network


Machine-learning techniques allow to extract information from electroencephalographic (EEG) recordings of brain activity. By processing the measurement results of a publicly available EEG dataset, we were able to obtain information that could be used to train a feedforward neural network to classify two types of volunteer activities with high efficiency.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. T. Schirrmeister, J. T. Springenberg, …, T. Ball (2018): Deep learning with convolutional neural networks for brain mapping and decoding of movement-related information from the human EEG. arXiv:1703.05051v5

  • [2] Nijboer, F., Sellers, E. W., …, Kübler, A. (2008): A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clincical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 119(8):1909–1916.

  • [3] Munßinger, J. I., Halder, …, Kubler, A. (2010). Brain Painting: First Evaluation of a New Brain–Computer Interface Application with ALSPatients and Healthy Volunteers. Frontiers in Neuroscience, 4.

  • [4] Tonin, L., Carlson, T., Leeb, R., Millán, J. d. R. (2011). Brain-controlled telepresence robot by motor-disabled people. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 4227–4230.

  • [5] Craik, A., He, Y., Contreras-Vidal JL. (2019): Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of neural engineering. doi: 10.1088/1741-2552/ab0ab5

  • [6] Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R. BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions on Biomedical Engineering 51(6):1034-1043, 2004.

  • [7] M. Toscani, T. Marzi, S. Righi, M. P. Viggiano, S. Baldassi (2010): Alpha waves: a neural signature of visual suppression. Experimental brain researches. 207(3-4):213-9. doi: 10.1007/s00221-010-2444-7

  • [8] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss: TMVA 4 Users Guide

  • [9] J. Suto, S. Oniga, C. Lung, I. Orha, Comparison of offline and realtime human activity recognition results using machine learning techniques, Neural Computing and Applications, March 2018.


Journal + Issues