Synthesis and anticancer properties of bacterial cellulose-magnesium oxide bionanocomposite

Open access

Abstract

Given the increase in global mortality rate due to various types of cancer, the present study aimed to develop optimal conditions for the synthesis of cellulose-magnesium oxide nanocomposite with favorable anticancer activity. For this purpose, the Taguchi method was used to design nine experiments with varied ratios of cellulose biopolymer, magnesium oxide nanoparticles and different stirring times. The scanning electron microscopy (SEM) images confirmed the formation of cellulose-magnesium oxide nanocomposite. The anticancer activity level of nine nanocomposites studied was evaluated using MTT assay on Michigan Cancer Foundation-7 (MCF-7) cell line. The nanocomposite synthesized in experiment 9 (8 mg/ml of magnesium oxide, 2 mg/ml of cellulose and stirring time of 60 min) showed the highest growth inhibitory activity on the cancer cells. Based on the attained results,e cellulose-magnesium oxide nanocomposite synthesized in optimal conditions can be used as an eligible anticancer agent.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Wang YJ Larsson M Huang WT Chiou SH Nicholls SJ Chao JI et al. The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Prog Polym Sci. 2016;57: 153-78.

  • 2. Mozaffari HR Zavattaro E Abdolahnejad A Lopez-Jornet P Omidpanah N Sharifi R et al. Serum and Salivary IgA IgG and IgM Levels in Oral Lichen Planus: A Systematic Review and Meta-Analysis of Case-Control Studies. Medicina. 2018;54(6):99.

  • 3. Mozaffari HR Sharifi R Sadeghi M. Interleukin-6 levels in the serum and saliva of patients with oral lichen planus compared with healthy controls: a meta-analysis study. Centr Eur J Immunol. 2018;43(1):103-8.

  • 4. Taran M Etemadi S Safaei M. Microbial levan biopolymer production and its use for the synthesis of an antibacterial iron (II III) oxide–levan nanocomposite. J Appl Polym Sci. 2017;134(12):44613.

  • 5. Safaei M Taran M. Fabrication characterization and antifungal activity of sodium hyaluronate-TiO2 bionanocomposite against Aspergillus niger. Mater Lett. 2017;207:113-6.

  • 6. Devadasu VR Alshammari TM Aljofan M. Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes. Int J Diabetes Dev Ctries. 2018;38:11-9.

  • 7. Sharifi R Nazari H Bolourchi P Khazaei S Parirokh M. The most painful site of maxillary anterior infiltrations. Dent Res J (Isfahan). 2016;13(6):539-43.

  • 8. Veehof MM Oskam MJ Schreurs KM Bohlmeijer ET. Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis. Pain. 2011;152(3):533-42

  • 9. Sharifi R Khazaei S Mozaffari HR Amiri SM Iranmanesh P Mousavi SA. Effect of massage on the success of anesthesia and infiltration injection pain in maxillary central incisors: Double-blind crossover trial. Dent Hypotheses. 2017;8(3):61-4.

  • 10. Mozaffari HR Izadi B Sadeghi M Rezaei F Sharifi R Jalilian F. Prevalence of oral and pharyngeal cancers in Kermanshah province Iran: A ten-year period. Int J Cancer Res. 2016;12(3-4):169-75.

  • 11. Mozaffari HR Payandeh M Ramezani M Sadeghi M Mahmoudiahmadabadi M Sharifi R. Efficacy of palifermin on oral mucositis and acute GVHD after hematopoietic stem cell transplantation (HSCT) in hematology malignancy patients: a meta-analysis of trials. Wspolczesna Onkol. 2017;21(4):299-305.

  • 12. Ma X Yu H. Cancer issue: global burden of cancer. Yale J Biol Med. 2006;79(3-4):85-94.

  • 13. Antoni S Soerjomataram I Moller B Bray F Ferlay J. An assessment of GLOBOCAN methods for deriving national estimates of cancer incidence. Bull World Health Organ. 2016; 94(3):174-84.

  • 14. Benson JR Jatoi I. The global breast cancer burden. Future Oncol. 2012;8(6):697-702.

  • 15. Sahoo SK Parveen S Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine. 2007;3(1): 20-31.

  • 16. Patel MK Zafaryab M Rizvi M Agrawal VV Ansari ZA Malhotra BD Ansari SG. Antibacterial and cytotoxic effect of magnesium oxide nanoparticles on bacterial and human cells. J Nanoeng Nanomanuf. 2013;3(2):162-6.

  • 17. Sugirtha P Divya R Yedhukrishnan R Suganthi KS Anusha N Ponnusami V Rajan KS. Green synthesis of magnesium oxide nanoparticles using brassica oleracea and punica granatum peels and their anticancer and photocatalytic activity. Asian J Chem. 2015; 27(7):2513.

  • 18. Karthik K Dhanuskodi S Kumar SP Gobinath C Sivaramakrishnan S. Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater Lett. 2017;206:217-20.

  • 19. Safaei M Taran M. Optimized synthesis characterization and antibacterial activity of an alginate-cupric oxide bionanocomposite. J Appl Polym Sci. 2018;135(2):45682.

  • 20. Chawla PR Bajaj IB Survase SA Singhal RS. Microbial cellulose: fermentative production and applications. Food Technol Biotechnol. 2009;47(2):107-24.

  • 21. Gupta VK Zeilinger S Ferreira Filho EX Duran-Dominguezde-Bazua MC Purchase D. Microbial Applications: Recent Advancements and Future Developments. Walter de Gruyter GmbH & Co KG 2017; pp.1-388.

  • 22. Nguyen VT Flanagan B Gidley MJ Dykes GA. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol. 2008;57(5):449-53.

  • 23. Krishnamoorthy K Moon JY Hyun HB Cho SK Kim SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem. 2012;22(47):24610-17.

  • 24. Safaei M Taran M. Optimal conditions for producing bactericidal sodium hyaluronate-TiO2 bionanocomposite and its characterization. Int J Biol Macromol. 2017;104:449-56.

  • 25. Rezaei R Mostafaie A Gorgin Karaji A Mansouri K. The effect of standardized extract of Echinacea Purpurea on cytotoxicity and proliferation of rat splenocytes. Journal of Applied Biological Sciences. 2015;9(2):19-22.

  • 26. Rasmussen JW Martinez E Louka P Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7(9):1063-77.

  • 27. Vinardell MP Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomaterials. 2015;5(2):1004-21.

  • 28. Ge S Wang G Shen Y Zhang Q Jia D Wang H Dong Q Yin T. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET nanobiotechnology. 2011;5(2):36-40.

  • 29. Caputo F De Nicola M Ghibelli L. 2014. Pharmacological potential of bioactive engineered nanomaterials. Biochem Pharmacol. 2014;92(1):112-30.

  • 30. Davis ME Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9): 771-82.

  • 31. Bisht G Rayamajhi S. ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine. 2016;3:9.

  • 32. Ostrovsky S Kazimirsky G Gedanken A Brodie C. Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2009;2(11):882-90.

Search
Journal information
Impact Factor


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.154
Source Normalized Impact per Paper (SNIP) 2018: 0.285

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 263 39
PDF Downloads 236 236 18