Overview of phenotypic methods used for differentiation of Staphylococcus aureus


Choosing the appropriate method for differentiation of Staphylococcus aureus strains is important for effective diagnostics and epidemiological investigations. Despite the fact that the results of phenotypic methods are strongly dependent on environmental conditions, they can still be useful in the investigation of epidemic strains of S. aureus. In this article, the potential application of commonly used phenotypic methods in epidemiological studies of S. aureus was analysed. Advantages and disadvantages of methods such as biotyping, serotyping, phage typing, AST (Antimicrobial Susceptibility Testing), SDS-PAGE (Sodium Dodecyl Sulphate Polyacryl Gel Electrophoresis), MLEE (Multilocus Enzyme Electrophoresis) and MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectroscopy) were also discussed. Finally, phenotypic techniques were compared in terms of their discriminatory potential, typeability of isolates, time of analysis, reproducibility, ease of performance and ease of results interpretation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Pomorska-Wesolowska M, Rozanska A., Natkaniec J, Gryglewska B, Szczypta A, Dzikowska M. Longevity and gender as the risk factors of methicillin-resistant Staphylococcus aureus infections in southern Poland. BMC Geriatr. 2017;17(1):51-8.

  • 2. Denis O. Route of transmission of Staphylococcus aureus. Lancet Infect Dis. 2017;7(2):124-5.

  • 3. Rao S. Epidemiological typing methods [Internet]. 2016 [cited 14 Jan 2018]. Available from: ttp://www.microrao.com/micronotes/typing.pdf.

  • 4. Stojowska K. Elaboration on new methods for genetic typing of bacteria based on ligation of oligonucleotide adapters to restriction fragments of genomic DNA and PCR techniques, application and evaluation of their usefulness in epidemiological studies [In Polish] Available from: http://pbc.gda.pl/Content/24012 [Accessed 14 Jan 2018].

  • 5. Devriese LA. A simplified system for biotyping Staphylococcus aureus strains isolated from different animal species. J Appl Microbiol. 1984;56(2):215-20.

  • 6. Miedzobrodzki J, Malachowa N, Markiewski T, Bialecka A, Kasprowicz A. Differentiation of Staphylococcus aureus isolates based on phenotypical characters [In Polish]. Postep Hig Med Dosw. 2008;62:322-7.

  • 7. Brzozowski M, Kwiatkowski P, Kosik-Bogacka D, Jursa-Kulesza J. The application of genotyping and phenotyping techniques for epidemiological analysis of microorganisms [In Polish]. Post Mikrobiol. 2017;56(3):353-66.

  • 8. Samaranayake L. Essential Microbiology for Dentistry. Elsevier Health Sciences. 2011:p.50-1.

  • 9. Ostojic M, Hukic M. Genotypic and phenotypic characteristics of methicillin-resistant Staphylococcus aureus (MRSA) strains, isolated on three different geography locations. Bosn J Basic Med Sci. 2015;15(3):48-56.

  • 10. Bruisten SM, Schouls L. Molecular typing and clustering analysis as a tool for epidemiology of infectious diseases. In: Kramer A, Kretzschmar M, Krickeberg K, editors. Modern infectious disease epidemiology. New York: Springer;2009:117-41.

  • 11. Mehndiratta PL, Bhalla P. Typing of methicillin resistant Staphylococcus aureus: a technical review. Indian J Med Microbiol. 2012;30(1):16-23.

  • 12. Weller TMA. Methicillin-resistant Staphylococcus aureus typing methods: which should be the international standard? J Hosp Infect. 2000;44(3):160-72.

  • 13. Sutter DE, Summers AM, Keys CE, Taylor KL, Frasch CE, Braun LE, et al. Capsular serotype of Staphylococcus aureus in the era of community-acquired MRSA. FEMS Immunol Med Microbiol. 2011;63(1):16-24.

  • 14. O’Riordan K, Lee JC. Staphylococcus aureus capsular polysaccha-rides. Clin Microbiol Rev. 2004;7(1):218-34.

  • 15. Marples RR, Rosdahl VT. International quality control of phage typing of Staphylococcus aureus. J Med Microbiol. 1997;46(6):511-6.

  • 16. Lakshmi GJ. Mechanism of resistance, phenotyping and genotyping of methicillin resistant Staphylococcus aureus: A Review. Int J Curr Microbiol App Sci. 2015;4(4):810-8.

  • 17. Stark L. Staphylococcus aureus: aspects of pathogenesis and molecular epidemiology. PhD Thesis. Linköping University Electronic Press, 2013.

  • 18. Piechowicz L, Galinski J, Dajnowska-Stanczewa A, Garbacz K. Phage types of Staphylococcus aureus isolated in Poland in 1999-2004 [In Polish]. Med Dosw Mikrobiol. 2005;57(2):105-11.

  • 19. Mehndiratta PL, Gur R, Saini S, Bhalla P. Staphylococcus aureus phage types and their correlation to antibiotic resistance. Indian J Pathol Microbiol. 2010;53(4):738-41.

  • 20. Kareiviene V, Pavilonis A, Sinkute G, Liegiute S, Vizuje G. Staphylococcus aureus resistance to antibiotics and spread of phage types. Medicina. 2006;42(4):332-9.

  • 21. Kali A, Stephen S, Sivaraman U, Kumar S, Joseph NM, Srirangaraj S, Easow JM. Bacteriophage types of methicillin-resistant Staphylococcus aureus in a tertiary care hospital. Australas Med J. 2013;6(10):496-503.

  • 22. Blanc DS, Lugeon C, Wenger A, Siegrist HH, Francioli P. Quantitative antibiogram typing using inhibition zone diameters compared with ribotyping for epidemiological typing of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1994;32(10):2505-9.

  • 23. Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect. 2014;20(4):255-66.

  • 24. Vainio A. Molecular methods for the epidemiological analysis of methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. Finlad, Tampere: National Institute for Health and Welfare (THL). 2012:p.35-45.

  • 25. Fitzgerald JR, Meaney WJ, Hartigan PJ, Smyth CJ, Kapur V. Fine-structure molecular epidemiological analysis of Staphylococcus aureus recovered from cows. Epidemiol Infect. 1997;119(2):261-9.

  • 26. Combe ML, Lemeland JF, Pestel-Caron M, Pons JL. Multilocus enzyme analysis in aerobic and anaerobic bacteria using gel electrophoresis-nitrocellulose blotting. FEMS Microbiol Lett. 2000;185(2):169-74.

  • 27. Kosikowska U, Stepien-Pysniak D, Pietras-Ozga D, Andrzejczuk S, Juda M, Malm A. Application of MALDI-TOF MS for identification of clinical isolates of bacteria from humans and animals [In Polish]. Diagn Lab. 2015;51(1):23-30.

  • 28. Manukumar HM, Umesha S. MALDI-TOF-MS based identification and molecular characterization of food associated methicillin-resistant Staphylococcus aureus. Sci Rep. 2017;7(1):1-16.

  • 29. Gagnaire J, Dauwalder O, Boisset S, Khau D, Freydière AM, Ader F et al. Detection of Staphylococcus aureus delta-toxin production by whole-cell MALDI-TOF mass spectrometry. PloS One. 2012;7(7):e40660.

  • 30. Dubois D, Leyssene D, Chacornac JP, Kostrzewa M, Schmit PO, Bonnet R et al. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010;48(3):941-5.

  • 31. Szabados F, Woloszyn J, Richter C, Kaase M, Gatermann S. Identification of molecularly defined Staphylococcus aureus strains using matrix-assisted laser desorption/ionization time of flight mass spectrometry and the Biotyper 2.0 database. J Med Microbiol. 2010;59(7):787-90.

  • 32. Josten M, Reif M, Szekat C, Al-Sabti N, Roemer T, Sparbier K, et al. Analysis of the MALDI-TOF mass spectrum of Staphylococcus aureus identifies mutations which allow differentiation of the main clonal lineages. J Clin Microbiol. 2013:JCM-00518.

  • 33. Spinali S, Van Belkum A, Goering RV, Girard V, Welker M, Van Nuenen M, et al. Microbial typing by matrix-assisted laser desorption ionization–time of flight mass spectrometry: do we need guidance for data interpretation? J Clin Microbiol. 2015;53(3):760-5.


Journal + Issues