Foliar Application of Sodium Molybdate Enhanced Nitrogen Uptake and Translocation in Soybean Plants by Improving Nodulation Process Under Salt Stress

Open access

Abstract

Soil salinity with different harmful effects on plant growth and productivity is one of the main reasons in diminishing biological nitrogen fixation and nitrogen assimilation in legume plants. Molybdate has a key role on nitrogen metabolism of plants and can be has a beneficial effect on it. Thus, this experiment was conducted to evaluate the effects of sodium molybdate spraying (0.2 and 0.4% solutions in water) on nodulation, nitrogen uptake and translocation in soybean plants under different levels of salt stress (0, 5 and 10 dS m−1 NaCl, respectively). Salinity reduced the nodulation, root and shoot growth and special flavonoids content in roots, which are have a key role in nodulation includes, daidzein, genistein, coumestrol and glycitein, also diminished nitrogenase, glutamine synthetase (GS), glutamate dehydrogenase (GDH), glutamine oxoglutarate aminotransferase (GOGAT) and nitrate reductase (NR) activities in nodes, nitrogen content of nodes, roots and leaves, nitrogen uptake and translocation by soybean plants. Under salt stress and nonsaline condition, sodium molybdate treatments improved the nodulation by increasing flavonoids content of roots, also these treatments enhanced the plant growth and nitrogenase, GS, GDH, GOGAT and NR activities of nodes. Furthermore, nitrogen content of nodes, roots and leaves, nitrogen uptake and translocation by soybean plants improved by sodium molybdate applications. Both of the sodium molybdate doses, exposed the similar effects on improving nodulation and nitrogen metabolism of soybean.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abd-Alla M.H. Vuong T.D. & Harper J.E. (1998). Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Sci. 38(1): 72-77.

  • Ahanger M.A. & Agarwal R.M. (2017). Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol.Biochem. 115: 449-460. doi: 10.1016/j.plaphy.2017.04.017.

  • Antunes P.M. de Varennes A. Rajcan I. & Goss M.J. (2006). Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biol.Biochem. 38: 1234-1242.

  • Araújo S.S. Beebe S. Crespi M. Delbreil B. González E.M. Gruber V. Lejeune-Henaut I. Link W. Monteros M.J. Prats E. & Rao I. (2015). Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit.Rev.Plant Sci. 34(1-3): 237-280.

  • Bai J. Jia J. Huang C. Wang Q. Wang W. Zhang G. Cui B. & Liu X. (2017). Selective uptake of nitrogen by Suaeda salsa under drought and salt stresses and nitrogen fertilization using N15. Ecol.Eng. 102: 542-545.

  • Becker T.W. Carrayol E. & Hirel B. (2000). Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization relative proportion and their role in ammonium assimilation or nitrogen transport. Planta. 211(6): 800-806.

  • Chakrabarti N. & Mukherji S. (2003). Effect of phytohormone pretreatment on nitrogen metabolism in Vigna radiata under salt stress. Biol. Plantarum 46(1): 63-66 doi:10.1023/A:1022358016487

  • Chen Y. Li Y. Sun P. Chen G. & Xin J. (2017). Interactive effects of salt and alkali stresses on growth physiological responses and nutrient (N P) removal performance of Ruppia maritima. Ecol.Eng. 104: 177-183 doi 10.1016/j.ecoleng.2017.04.029

  • Choi E.Y. Kolesik P. McNeill A. Collins H. Zhang Q. Huynh B.L. Graham R. & Stangoulis J. (2007). The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.). Plant Cell.Environ. 30(8): 984-993. DOI:10.1111/j.1365-3040.2007.01693.x

  • Comba M.E. Benavides M.P. & Tomaro M.L. (1998). Effect of salt stress on antioxidant defense system in soybean root nodules. Funct. Plant Biol. 25: 665-671.

  • Coronado C. Zuanazzi J.S. Sallaud C. Quirion J.C. Esnault R. Husson H.P. Kondorosi A. & Ratet P. (1995). Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol. 108(2): 533-542.

  • Duke S.H. & Ham G.E. (1976). The effect of nitrogen addition on N2-fixation and on glutamate dehydrogenase and glutamate synthase activities in nodules and roots of soybeans inoculated with various strains of Rhizobium japonicum. Plant Cell.Physiol. 17: 1037-1044.

  • Fageria N.K. (1992). Maximizing crop yields. CRC Press.

  • Fageria N.K. & Baligar V.C. (2005). Enhancing nitrogen use efficiency in crop plants. Adv.Agron. 88: 97-185.

  • Farhangi-Abriz S. & Torabian S. (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 137: 64-70 doi: 10.1016/j.ecoenv.2016.11.029

  • Fernández-Pascual M. de Lorenzo C. de Felipe M.R. Rajalakshmi S. Gordon A.J. Thomas B.J. & Minchin F.R. (1996). Possible reasons for relative salt stress tolerance in nodules of white lupin cv. Multilupa. J.Exp.Bot. 47(11): 1709-1716 https://doi.org/10.1093/jxb/47.11.1709

  • Flowers T.J. Galal H.K. & Bromham L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct.Plant Biol. 37(7): 604-612 https://doi.org/10.1071/FP09269

  • Fougère F. Le Rudulier D. & Streeter J.G. (1991). Effects of salt stress on amino acid organic acid and carbohydrate composition of roots bacteroids and cytosol of alfalfa (Medicago sativa L.). Plant Physiol. 96: 1228-1236.

  • Franke A.A. Custer L.J. Cerna C.M. & Narala K. (1995). Rapid HPLC analysis of dietary phytoestrogens from legumes and from human urine. Exp.Biol.Med. 208(1): 18-26.

  • Ghoulam C. Foursy A. & Fares K. (2002). Effects of salt stress on growth inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ.Exp.Bot. 47: 39-50.

  • Grieve C.M. Grattan S.R. & Maas E.V. (2012). Plant salt tolerance. Agricultural salinity assessment and management. 2nd Edition ASCE Manual and Reports on Engineering Practice. 71: 405-459.

  • Huber D.M. & Thompson I.A. (2007). Nitrogen and plant disease. Mineral Nutrition and Plant Disease. In: Datnoff L.E. Elmer W.H. Huber D.M. (Eds.) The American Phytopathological Society Press St. Paul M.N 31-44.

  • Jaworski E.G. (1971). Nitrate reductase assay in intact plant tissues. Biochem.Biophys.Res.Commun. 43(6): 1274-1279.

  • Kusano M. Fukushima A. Redestig H. & Saito K. (2011). Metabolomic approaches toward understanding nitrogen metabolism in plants. J.Exp.Bot. 62(4): 1439-1453 https://doi.org/10.1093/jxb/erq417

  • López-Gómez M. Hidalgo-Castellanos J. Lluch C. & Herrera-Cervera J.A. (2016). 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines. Plant Physiol. Biochem. 108: 212-221 doi: 10.1016/j.plaphy.2016.07.017

  • Marschner H. (1995). Mineral nutrition of higher plants (2nd Edition): Functions of mineral nutrients: Macronutrients My Science Work pp. 229-312 https://doi.org/10.1016/B978-012473542-2/50010-9

  • Mengel K. (2001). Alternative or complementary role of foliar supply in mineral nutrition. In: International Symposium on Foliar Nutrition of Perennial Fruit Plants 594: 33-47.

  • Munns R. & James R.A. (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil. 253(1): 201-218 doi: 10.1023/A:1024553303144

  • Munns R. & Tester M. (2008). Mechanisms of salinity tolerance. Annu.Rev.Plant Biol. 59: 651-681. doi: 10.1146/annurev.arplant.59.032607.092911

  • Pedersen P. Kumudini S. Board J. & Conley S. (2014). Soybean growth and development Ames IA: Iowa State University Extension United States.

  • Sawhney V. & Singh A.R. (1985). Effect of applied nitrate on enzymes of ammonia assimilation in nodules of Cicer arietinum L. Plant soil. 86(2): 241-248 doi:10.1007/BF02182899

  • Serraj R. Roy G. & Drevon J.J. (1994). Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen diffusion. Physiol.Plant. 91: 161-168. DOI: 10.1111/j.1399-3054.1994.tb00414.x

  • Sinclair T.R. & Shiraiwa T. (1993). Soybean radiation-use efficiency as influenced by nonuniform specific leaf nitrogen distribution and diffuse radiation. Crop Sci. 33: 808-812.

  • Srivastava. H.S. (1980). Regulation of nitrate reductase activity in higher plants. Phytochemistry 19: 725-733.

  • Stiefel E.I. (1993). Molybdenum enzymes cofactors and chemistry. An Introductory survey. Chapter 1 pp. 1-19 ACS Symp. Ser. Vol. 535 DOI: 10.1021/bk-1993-0535.ch001

  • Taiz L. & Zeiger E. (1998a). Mineral nutrition. In: Plant Physiol. (2nd Edition). Sinauer Assoc. Inc. Publishers Sunderland MA. pp. 103-124.

  • Turner G.L. & Gibson A.H. (1980). Measurement of nitrogen fixation by indirect means. In: Methods for Evaluating Biological Nitrogen Fixation (Ed. Bergersen F.J). John Wiley and Sons New York pp. 111-138.

  • Wang Y.F. Jiang D. Yu Z.W. & Cao W.X. (2003b). Effects of nitrogen rates on grain yield and protein content of wheat and its physiological basis. Sci.Agric.Sin. 36(5): 513-520 (in Chinese with English abstract).

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 252 109 1
PDF Downloads 102 61 2