Development of Reference Buildings to Analyze the Potential for Energy-Efficient Refurbishment of Buildings

Open access

Abstract

The building sector offers the largest potential for a significant reduction of greenhouse gas emissions. Based on own preliminary investigations for the State of Bavaria, a complete renovation of the building envelope of the current residential building stock would result in a reduced demand for final thermal energy for space heating and domestic hot water by about 70 %. The present study analyzes different existing reference buildings and reference methods. Based on a general literature review, specific criteria will be developed for reference models to represent the thermal energy consumption of the residential building stock for the regional domain under investigation. The objective is to represent the building stock with a limited amount of reference buildings. The method for the development of a reference building will be shown exemplarily for one category.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. UNEP SBCI. Buildings and Climate Change: Summary for Decision-Makers2009. <https://europa.eu/capacity4dev/unep/document/buildings-and-climate-change-summary-decision-makers> (Accessed January 3 2018).

  • 2. Barton M and Schweigler C 2019. Scenarios for the development of building heat demand in Bavaria - project report: Tools and solutions for the energy transition in the thermal sector (Szenarien für die Entwicklung des Gebäudewärmebedarfs in Bayern - Projektbericht: Werkzeuge und Lösungen für die Wärmewende); (in preparation): München.

  • 3. Schwan L Hahn J Barton M Anders R and Schweigler C 2019. In: 32th International Conference on Efficiency Cost Optimization Simulation and Environmental Impact of Energy Systems. Conference Proceedings Wroclaw Poland; ECOS 2019 Ed.: Wroclaw Poland.

  • 4. Schaefer A and Ghisi E 2016. Method for obtaining reference buildings. Energy and Buildings128 660–672.

  • 5. VDI. Requirements on methods of calculation to thermal and energy simulation of buildings and plants - Buildings (Anforderungen an Rechenverfahren zur Gebäude- und Anlagensimulation - Gebäudesimulation) May 2001 (Accessed February 4 2019).

  • 6. Ron Judkoff and Joel Neymark. The BESTEST Method for Evaluating and Diagnosing Building Energy Software.

  • 7. European Union. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union 2010.

  • 8. Commission Delegated Regulation (EU) No 244/2012 of 16 January 2012 supplementing Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a comparative methodology framework for calculating cost-optimal levels of minimum energy performance requirements for buildings and building elementsText with EEA relevance 2012.

  • 9. Corgnati SP Fabrizio E Filippi M and Monetti V 2013. Reference buildings for cost optimal analysis: Method of definition and application. Applied Energy102 983–993.

  • 10. Deru M Field K Studer D Benne K Griffith B and Torcellini P 2011. NREL M Liu B Halverson M Winiarski D and M. Rosenberg: PNNL; Yazdanian: LBNL. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock.

  • 11. Dascalaki EG Droutsa KG Balaras CA and Kontoyiannidis S 2011. Building typologies as a tool for assessing the energy performance of residential buildings – A case study for the Hellenic building stock. Energy and Buildings43 3400–3409.

  • 12. Theodoridou I Papadopoulos AM and Hegger M 2011. A typological classification of the Greek residential building stock. Energy and Buildings43 2779–2787.

  • 13. Dascalaki EG Kontoyiannidis S Balaras CA and Droutsa KG 2013. Energy certification of Hellenic buildings: First findings. Energy and Buildings65 429–437.

  • 14. Serra C Simões N Tadeu S and Tadeu A 2013. Definition of reference buldings for energy performance calculation - Portuguese case. Energy for Sustainability2013.

  • 15. Brandão de Vasconcelos A Duarte Pinheiro M Cabaço A and Costa Manso A 2016. Energy Cost-Efficient Rehabilitation Measures for the Portuguese Residential Buildings Constructed in the 1960–1990 Period. In: Sustainable construction: Building performance simulation and asset and maintenance management. Delgado J.M.P.Q. Ed.; Springer: Singapore vol. 8 pp. 23–42.

  • 16. Loga T Stein B and Diefenbach N 2016. TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy and Buildings132 4–12.

  • 17. Balaras C Dascalaki E Sijanec Zavrl M Rakuscek A Corrado V Corgnati S Despretz H Roarty C Hanratty M Sheldrick B Cyx W Popiolek M Kwiatkowski J Groß M Spitzbart C Georgiev Z Iakimova S Vimmr T Wittchen KB Kragh J and Diefenbach N 2010. Use of building typologies for energy performance assessment of national building stocks: Existent experiences in European countries and common approach; IWU: Darmstadt.

  • 18. Ballarini I Corgnati S.P and Corrado V 2014. Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project. Energy Policy68 273–284.

  • 19. IWU 2015. German residential building typology - exemplary measures to improve the energy efficiency of typical residential buildings (Deutsche Wohngebäudetypologie - Beispielhafte Maßnahmen zur Verbesserung der Energieeffizienz von typischen Wohngebäuden); institute for housing and environment (Institut Wohnen und Umwelt): Darmstadt.

  • 20. ASIEPI 2009 1. Comparison of the EP requirements among Member States: Reference buildings for EP calculation studies.

  • 21. Ordinance on energy-saving thermal insulation and energy-saving system technology for buildings (Energy Saving Ordinance) (Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden (Energieeinsparverordnung)): EnEV July 26 2007.

  • 22. Ordinance amending the Energy Saving Ordinance (Verordnung zur Änderung der Energieeinsparverordnung): EnEV 2009 2009.

  • 23. Bigalke U Armbruster A Lukas F Krieger O Schuch C and Kunde J 2016. Statistics and analyses on energy efficiency in existing buildings (Statistiken und Analysen zur Energieeffizienz im Gebäudebestand).

  • 24. Economidou M Atanasiu B Despret C Maio J Ingeborg N Rapf O Laustsen J Ruyssevelt P Staniaszek D Strong D and Zinetti S 2011. Europe’s buildings under the mircoscope: A country-by-country review of the energy performance of buildings.

  • 25. Federal Statistical Office (Statistisches Bundesamt) 2018. Existing housing stock - Construction of flats and residential buildings - Long series from 1969 - 2017 (Bestand an Wohnungen und Wohngebäuden - Bauabgang von Wohnungen und Wohngebäuden - Lange Reihen ab 1969 - 2017).

  • 26. Bavarian State Office for Statistics and Data Processing (Bayerisches Landesamt für Statistik und Datenverarbeitung) 2012. Stock of residential buildings and flats in Bavaria - basis: final results of the building and flat count 2011 (Bestand an Wohngebäuden und Wohnungen in Bayern - Basis: Endgültige Ergebnisse der Gebäude- und Wohnungszählung 2011).

  • 27. Cischinsky H and Diefenbach N 2018. Data collection residential building stock 2016 - Data collection on energy characteristics and modernisation rates in the German and Hessian residential building stock (Datenerhebung Wohngebäudebestand 2016 - Datenerhebung zu den energetischen Merkmalen und Modernisierungsraten im deutschen und hessischen Wohngebäudebestand): Darmstadt.

  • 28. Bavarian State Office for Statistics and Data Processing (Bayerisches Landesamt für Statistik und Datenverarbeitung). GENISIS-Online Database - Projection: Districts Population Deadlines (GENISIS-Online Datenbank - Vorausberechnung: Kreise Bevölkerung Stichtage). Results - 12421-001. <https://www.statistik.bayern.de/statistik/demwa/>.

  • 29. Statista. Development of the population in Bavaria from 1960 to 2017 (Entwicklung der Einwohnerzahl in Bayern von 1960 bis 2017). <https://de.statista.com/statistik/daten/studie/154879/umfrage/entwicklung-der-bevoelkerung-von-bayern-seit-1961> (Accessed February 12 2019).

  • 30. Crawley DB and Hand JW 2008. Kummert M.; Griffith B.T. Contrasting the capabilities of building energy performance simulation programs. Building and Environment43 661–673.

  • 31. Crawley D Hand J Kummert M and Griffith BT 2005. Contrasting the Capabilities of Building Energy Performance Simulation Programs.

  • 32. DIN 2007. Energy assessment of buildings - Calculation of useful final and primary energy requirements for heating cooling ventilation domestic hot water and lighting (Energetische Bewertung von Gebäuden - Berechnung des Nutz- End- und Primärenergiebedarfs für Heizung Kühlung Lüftung Trinkwarmwasser und Beleuchtung).

  • 33 DIN. DIN V 4108-6:2003-06 Thermal insulation and energy saving in buildings - Part 6: Calculation of annual heating energy demand and annual heating energy demand (Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 6: Berechnung des Jahresheizwärme- und des Jahresheizenergiebedarfs); Beuth Verlag GmbH: Berlin.

  • 34 Corradini R 2013. Regionally differentiated solar thermal potential for buildings with one residential unit (Regional differenzierte Solarthermie-Potenziale für Gebäude mit einer Wohneinheit). dissertation Ruhr- Universität Bochum: Bochum.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 12
PDF Downloads 52 52 15