The Possibility to Use Modified Flight Ash as a Neutralizer in the Acid Soils Reclamation Processes

Open access

Abstract

Using the alkaline fly ash after combustion of lignite as the acid soils neutralizer is a technique known for decades. Due to many disadvantages of the direct fly ash application it is sought to modify this material prior to its use. The process of fly ash modification in the magnetic activator involved breaking up fly ash to small grain sizes in order to obtain a material with a very large specific surface and modified properties. The purpose of the research was to compare the properties of unmodified fly ash with those of ash modified in the magnetic activator in terms of its usefulness in the neutralization of acidic soils. Unmodified fly ash was classified as a medium-grained calciferous material. The basic components of ash were silicates (33.28% of SiO2) and calcium compounds (31.26% of CaO). It has a low heavy metal content falling within a range characteristic of coal ash and meeting soil quality standard requirements. As a result of activation, the following changes were obtained in the properties of modified ash compared with unmodified ash: sand fraction content – reduced to 0.40, silt fraction content – increased by 1.40, silt fraction content – increased by 1.68, content of the sum of the dust and silt fractions – increased by 1.49, specific surface – increased by 1.65, fineness – reduced by 0.48. Modification of fly ash in the magnetic activator was found to have improved the physical properties of ash as acidic soil neutralizer, and its chemical properties make such an application possible.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Yuan Ch.G. Leaching characteristics of metals in fly ash from coal-fired power plant by sequential extraction procedure. Microchim Acta 165 (2009) 91–96.

  • 2. Stouraiti C. Xenidis A. Paspaliaris I. Reduction of Pb Zn and Cd availability from tailings and contaminated soils by the application of lignite fly ash. Water Air Soil Pollut 137 (2002) 247–265.

  • 3. Yunusa I.A.M.; Eamus D.; DeSilva D.L.; Murray B.R.; Burchett M.D.; Skilbeck G.C.; Heidrich C. Fly-ash: an exploitable resource for management of Australian agricultural soils. Fuel 85 (2006) 2337–2344.

  • 4. Veranis N.; Nimfopoulos M.K.; Gertsis A.; Gerouki F. Agricultural and industrial applications of the hellenic fly ash and Environmental impacts. Proc. 19th International Congress Industrial Minerals Athens Hellas 2008.

  • 5. Tejasvi A.; Kumar S. Impact of fly ash on soil properties. Natil Acad Sci Lett 35/1 (2012) 13–16.

  • 6. Hartmann P.; Fleige H.; Horn R. Changes in soil physical properties of forest floor horizons due to long-term deposition of lignite fly ash. J Soils Sediments 10 (2010) 231–239.

  • 7. Clark R.B.; Baligar V.C. Acidic and alkaline soil constraints on plant mineral nutrition. In Plant – Environment Interactions. Second edition ed. by R.E. Wilkinson. Marcel Dekker Inc. New York Basel 2000 pp 133– 178.

  • 8. Yunusa I.A.M.; Manoharan V.; Odeh Inakwu O.A.; Surendra Shrestha Skilbeck C.G.; Eamus D. Structural and hydrological alterations of soil due to addition of coal fly ash. J Soils Sediments 11 (2011) 423–431.

  • 9. Chabbi A.; Rumpel C.; Grootes P.M.; Gonzalez-Perez J.A.; Delaune R.D.; Gonzalez-Vila F.; Nixdorf B.; Hüttl R.F. Lignite degradation and mineralization in lignite-containing mine sediment as revealed by 14C activity measurements and molecular analysis. Organic Geochemistry 37 (2006) 957–976.

  • 10. Backes C.A.; Pulford I.D.; Duncan H.J. Seasonal Variation of Pyrite Oxidation Rates in Colliery Spoil. Soil Use and Management 9/1 (1993) 30– 34.

  • 11. Meyer G.; Waschkies C.; Hüttl R.F. Investigations on pyrite oxidation in mine spoils of the Lusatian lignite mining district. Plant and Soil 213 (1999) 137–147.

  • 12. Khanra S.; Mallick D.; Dutta S.N.; Chaudhuri S.K. Studies on the phase mineralogy and leaching characteristics of coal fly ash. Water Air and Soil Pollution 107 (1998) 251–275.

  • 13. Mahale N.K.; Patil S.D.; Sarode D.B.; Attarde A.B. Effect of fly ash as an admixture in agriculture and the study of heavy metal accumulation in wheat (Triticum aestivum) mung bean (Vigna radiata) and urad beans (Vigna mungo). Pol J Environ Stud 6 (2012) 1713–1719.

  • 14. Ćwiąkała M.; Sosiński R.; Nowak W.; Szymańska J. Brown Coal Fly-Ash from Electric Power Station „Pątnów” Activation in Electromagnetic Mill. Engineering & Protection of Environment 11/4 (2008) 491–502.

  • 15. Ćwiąkała M.; Korzeniowska J.; Kraszewski C.; Widuch A. Soil stabilisation with the use of hydraulic road binders on the basis of brown coal fly ash. Roads and Bridges 3 (2012) pp 183–194.

  • 16. Kołodziejczyk U.; Ćwiąkała M.; Widuch A. Use of fly-ash for the production of hydraulic binding agents and for soil stabilization. Gospodarka Surowcami Mineralnymi 28/4 (2012) 15–28.

  • 17. CSO. Statistical Yearbook of Agriculture. Central Statistical Office Warsaw 2017.

  • 18. Gitari W.M.; Petrik L.F.; Etchebers O.; Key D.L.; Iwuoha E.; Okujeni C. Passive neutralisation of acid mine drainage by fly ash and its derivatives: A column leaching study. Fuel 87 (2008) 1637–1650.

  • 19. Greinert A.; Drab M.; Kostecki J.; Fruzińska R. Post-mining soils in Łęknica region. In Technogenic soils of Poland ed. by P. Charzyński P. Hulisz R. Bednarek PSSS Toruń 2013 pp 231–251.

  • 20. Greinert H.; Drab M.; Greinert A. Studies of the forest restoration effectiveness on the phytotoxic acid Miocene sand dumps in the former lignite mine in Łęknica. Oficyna Wyd. Uniwersytetu Zielonogórskiego Zielona Góra 2009.

  • 21. Koukouzas N.; Ward C.R.; Li Z. Mineralogy of lignites and associated strata in the Mavropigi field of the Ptolemais Basin northern Greece. Int J Coal Geol 81 (2010) 182–190.

  • 22. Thakur O.P.; Singh A.; Singh B.D. Petrographic Characterization of Khadsaliya Lignites Bhavnagar District Gujarat. Journal Geological Society of India 76 (2010) 40–46.

  • 23. Stumm W. Morgan J.J. Aquatic chemistry. Wiley Interscience New York 1996.

  • 24. Mohan D.; Chander S. Single binary and multicomponent sorption of iron and manganese on lignite. J Colloid Interf Sci 299 (2006) 76–87.

  • 25. Uhlmann W.; Grünewald U.; Gröschke A.; Lessmann D.; Hemm M.; Gockel G.; Seidl K. Hydrogeochemische Entwicklung von Tagebauseen während der Flutung. Prognose und Beobachtung im Lausitzer Revier. Aktuelle Reihe 4/1 (2000) 78–79.

  • 26. Drab M.; Greinert H. The pH changes of the soils formed as a result of reclamation of the sand-pits. Acta Agrophysica 51 (2001) 37–43.

  • 27. CSO. Environment 2017. Central Statistical Office Warsaw 2017.

  • 28. CSO. Statistical Yearbook of Industry – Poland. Central Statistical Office Warsaw 2017.

  • 29. ACAA. Coal Ash Material Safety. A Health Risk-Based Evaluation of USGS Coal Ash Data from Five US Power Plants. American Coal Ash Association AECOM 2012.

  • 30. Likus-Cieślik J.; Pietrzykowski M.; Śliwińska-Siuśta M.; Krzaklewski W.; Szostak M. A preliminary assessment of soil sulphur contamination and vegetations in the vicinity of former boreholes on the aff orested post-mine site Jeziórko. Geology Geophysics & Environment 41 (2015) 371–380.

  • 31. Likus-Cieślik J.; Pietrzykowski M.; Szostak M.; Szulczewski M. Spatial distribution and concentration of sulfur in relation to vegetation cover and soil properties on a reclaimed sulfur mine site (Southern Poland). Environ Monit Assess 189 (2017) 87 DOI 10.1007/s10661-017-5803-z.

  • 32. Likus-Cieślik J.; Pietrzykowski M. Vegetation development and nutrients supply of trees in habitats with high sulfur concentration in reclaimed former sulfur mines Jeziórko (Southern Poland). Environ Sci Pollut Res (2017) DOI 10.1007/s11356-017-9638-5.

  • 33. Ugurlu A. Leaching characteristics of fly ash. Environ Geol 46 (2004) 890–895.

  • 34. Kabata-Pendias A.; Pendias H. Trace elements in soils and plants. CRC Press LLC 2001 310–317.

  • 35. Krzaklewski W. Pietrzykowski M. Woś B. Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecological Engineering 49 2012 35-40. doi.org/10.1016/j.ecoleng.2012.08.026.

  • 36. Pietrzykowski M. Woś B. Pająk M. Wanic T. Krzaklewski W. Chodak M. Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment. Environmental Science and Pollution Research 25(17) 2018 17091-17099. DOI: 10.1007/s11356-018-1892-7.

  • 37. Pietrzykowski M. Woś B. Pająk M. Wanic T. Krzaklewski W. Chodak M. The impact of alders (Alnus spp.) on the physico-chemical properties oftechnosols on a lignite combustion waste disposal site. Ecological Engineering 120 2018 180–186 doi.org/10.1016/j.ecoleng.2018.06.004

  • 38. Pietrzykowski M. Woś. B. Chodak M. Sroka K. Pająk M. Wanic T. Effects of alders (Alnus sp.) used for reclamation of lignite combustion wastes. Journal of American Society of Mining and Reclamation. Published by ASMR 1305 Weathervane Dr. Champaign IL61821 7(1) 2018 51-76 DOI:org/10.21000/JASMR18010030.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 826 826 3
PDF Downloads 114 114 4