Numerical Analysis of Prefabricated Steel-Concrete Composite Floor in Typical Lipsk Building

Open access

Abstract

The aim of the work was to perform numerical analysis of a steel-concrete composite floor located in a LIPSK type building. A numerical model of the analytically designed floor was performed. The floor was in a six-storey, retail and service building. The thickness of a prefabricated slab was 100 mm. The two-row, crisscrossed reinforcement of the slab was made from φ16 mm rods with a spacing of 150 x 200 mm. The span of the beams made of steel IPE 160 profiles was 6.00 m and they were spaced every 1.20 m. The steelconcrete composite was obtained using 80×16 Nelson fasteners. The numerical analysis was carried out using the ADINA System based on the Finite Element Method. The stresses and strains in the steel and concrete elements, the distribution of the forces in the reinforcement bars and cracking in concrete were evaluated. The FEM model was made from 3D-solid finite elements (IPE profile and concrete slab) and truss elements (reinforcement bars). The adopted steel material model takes into consideration the plastic state, while the adopted concrete material model takes into account material cracks.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ahn J.-K. Lee C.-H.: Fire behavior and resistance of partially encased and slim-floor composite beams Journal of Constructional Steel Research 129 (2017) 276-285.

  • 2. Budziak M. Grabowski T.: Failure Assessment of Steel-Concrete Composite Column Under Blast Loading Engineering Transactions 62 1 (2014) 61-84.

  • 3. Chiorean C. G. Buru S. M.: Practical nonlinear inelastic analysis method of composite steel-concrete beams with partial composite action Engineering Structures 134 (2017) 74-106.

  • 4. Eurokod 4: Projektowanie zespolonych konstrukcji stalowo-betonowych. Część 1-1: Reguły ogólne i reguły dla budynków. PN-EN 1994-1-1.

  • 5. Henriques D. Gonçalves R. Camotim D.: GBT-based finite element to assess the buckling behaviour of steel-concrete composite beams Thin-Walled Structures 107 (2016) 207-220.

  • 6. Kucharczuk W. Labocha S.: Efektywność rozwiązań konstrukcyjnych stropu w zależności od stopnia zespolenia płyty betonowej z belką stalową Konstrukcje stalowe 5 124 (2013) 30-31.

  • 7. Liu X. Bradford M. A. Ataei A.: Flexural performance of innovative sustainable composite steel-concrete beams Engineering Structures 130 (2017) 282-296.

  • 8. Liu Y. Guo L. Qu B. Zhang S.: Experimental investigation on the flexural behavior of steel-concrete composite beams with U-shaped steel girders and angle connectors Engineering Structures 131 (2017) 492-502.

  • 9. Machelski C. Toczkiewicz R.: Effects of connection flexibility in steelconcrete composite beams due to live loads Archives of Civil and Mechanical Engineering 6 1 (2006) 65-86.

  • 10. Machowski A. Murzewski J.: Szkielety stalowe budynków wielokondygnacyjnych Kraków Wydaw. Politechniki Krakowskiej im. Tadeusza Kościuszki 1988.

  • 11. Mashiri F. R. Mirza O. Canuto C. Lam D.: Post-fire Behaviour of Innovative Shear Connection for Steel-Concrete Composite Structures Structures 9 (2017) 147-156.

  • 12. Wróblewski T. Berczyński S. Abramowicz M.: Estimation of the parameters of the discrete model of a steel-concrete composite beam Archives of Civil and Mechanical Engineering 13 2 (2013) 209-219.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 638 127 1
PDF Downloads 124 93 6