Optimal Shakedown of the Thin-Wall Metal Structures Under Strength and Stiffness Constraints

Open access


Classical optimization problems of metal structures confined mainly with 1st class cross-sections. But in practice it is common to use the cross-sections of higher classes. In this paper, a new mathematical model for described shakedown optimization problem for metal structures, which elements are designed from 1st to 4th class cross-sections, under variable quasi-static loads is presented. The features of limited plastic redistribution of forces in the structure with thin-walled elements there are taken into account. Authors assume the elastic-plastic flexural buckling in one plane without lateral torsional buckling behavior of members. Design formulae for Methods 1 and 2 for members are analyzed. Structures stiffness constrains are also incorporated in order to satisfy the limit serviceability state requirements. With the help of mathematical programming theory and extreme principles the structure optimization algorithm is developed and justified with the numerical experiment for the metal plane frames.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Alawdin P. Limit Analysis of Structures under Variable Loads. Minsk: Tekhnoprint; 2005. http://isbnplus.org/9789854647272.

  • 2. Alawdin P Bulanov G. Shakedown of Composite Frames Taking into Account Plastic and Brittle Fracture of Elements. Civ Environ Eng Reports. 2015;15(4). doi:10.1515/ceer-2014-0031.

  • 3. Alawdin P Liepa L. Optimal shakedown analysis of plane reinforced concrete frames according to Eurocodes. Int J Mech Mater Des. December 2015. doi:10.1007/s10999-015-9331-0.

  • 4. Alawdin P Muzychkin Y. Limit analysis of structures with destructible elements under impact loadings. Eng Trans. 2011;59(3):139-159.

  • 5. Atkočiūnas J. Mathematical models of optimization problems at shakedown. Mech Res Commun. 1999;26(3):319-326. doi:10.1016/S0093-6413(99)00030-0.

  • 6. Atkočiūnas J. Optimal Shakedown Design of Elastic-Plastic Structures. Vilnius Lithuania: Vilnius Gediminas Technical University; 2012. doi:10.3846/1240-S.

  • 7. Atkočiūnas J Karkauskas R. Optmization of Elastic Plastic Beam Structures. Vilnius Lithuania: Vilnius Gediminas Technical University; 2010. doi:10.3846/1137-S.

  • 8. Atkočiūnas J Merkevičiūtė D Venskus A. Optimal shakedown design of bar systems: Strength stiffness and stability constraints. Comput Struct. 2008;86(17-18):1757-1768. doi:10.1016/j.compstruc.2008.01.008.

  • 9. Atkočiūnas J Norkus A. Method of fictitious system for evaluation of frame shakedown displacements. Comput Struct. 1994;50(4):563-567. doi:10.1016/0045-7949(94)90027-2.

  • 10. Atkočiūnas J Venskus A. Optimal shakedown design of frames under stability conditions according to standards. Comput Struct. 2011;89(3-4):435-443. doi:10.1016/j.compstruc.2010.11.014.

  • 11. Boissonnade N Greiner R Jaspart JP Linder J. Rules for Member Stability in EN 1993-1-1: Background Documentation and Design Guidelines. European Convention for Constructional Steelwork; 2006. http://www.steelconstruct.com/site/index.php?module=store&target=publicStore&id=19.

  • 12. Borino G. Shakedown Under Thermomechanical Loads. In: Hetnarski RB ed. Encyclopedia of Thermal Stresses. Dordrecht: Springer Netherlands; 2014. doi:10.1007/978-94-007-2739-7.

  • 13. BS EN 1993-1-1. Eurocode 3: Design of steel structures. Part 1-1: General rules and rules for buildings. 2005.

  • 14. Čyras A. Mathematical Models for the Analysis and Optimization of Elastoplastic Structures. Chichester UK: Ellis Horwood Limited; 1983.

  • 15. Čyras A Atkočiūnas J. Mathematical model for the analysis of elastic-plastic structures under repeated—variable loading. Mech Res Commun. 1984;11(5):353-360. doi:10.1016/0093-6413(84)90082-X.

  • 16. Kala Z. Global sensitivity analysis in stability problems of steel frame structures. J Civ Eng Manag. 2016;22(3):417-424. doi:10.3846/13923730.2015.1073618.

  • 17. Kala Z. Sensitivity analysis of the stability problems of thin-walled structures. J Constr Steel Res. 2005;61(3):415-422. doi:10.1016/j.jcsr.2004.08.005.

  • 18. Karkauskas R. Optimisation of geometrically non-linear elastic-plastic structures in the state prior to plastic collapse. J Civ Eng Manag. 2007;13(3):37-41. doi:10.1080/13923730.2007.9636436.

  • 19. König JA. Shakedown of Elastic-Plastic Structures. Vol 7. Amsterdam: Elsevier; 1987. doi:10.1016/B978-0-444-98979-6.50018-9.

  • 20. Leonetti L Casciaro R Garcea G. Effective treatment of complex statical and dynamical load combinations within shakedown analysis of 3D frames. Comput Struct. 2015;158:124-139. doi:10.1016/j.compstruc.2015.06.002.

  • 21. Liepa L. Geometrically Nonlinear Analysis of Elastic-Plastic Frame. 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120723_105737-68422.

  • 22. Liepa L Blaževičius G Merkevičiūtė D Atkočiūnas J. Structural shakedown: a new methodology for estimating the residual displacements. J Civ Eng Manag. 2016;22(8):1055-1065. doi:10.3846/13923730.2016.1217924.

  • 23. Liepa L Karkauskas R. Calculation of elastic-plastic geometrically nonlinear frames. Sci - Futur Lith. 2012;4(4):326-334. doi:10.3846/mla.2012.51.

  • 24. LST STR 2.05.08:2005. Plieninių konstrukcijų projektavimas. Pagrindinės nuostatos.

  • 25. Mistakidis ES Stavroulakis GE. Nonconvex Optimization in Mechanics. Vol 21. Boston MA: Springer US; 1998. doi:10.1007/978-1-4615-5829-3.

  • 26. Narayanan R Roberts TM. Structures Subjected to Repeated Loading: Stability and Strength. London and New York: Elsevier; 1991.

  • 27. Nguyen Q-S. Min-Max Duality and Shakedown Theorems in Plasticity. In: Nonsmooth Mechanics and Analysis. Boston: Kluwer Academic Publishers; :81-92. doi:10.1007/0-387-29195-4_8.

  • 28. Ofner R. Traglasten Von Staben aus Stahl bei Druck und Biegung. 1997.

  • 29. Venskus A Kalanta S Atkočiūnas J Ulitinas T. Integrated load optimization of elastic-plastic axisymmetric plates at shakedown. J Civ Eng Manag. 2010;16(2):203-208. doi:10.3846/jcem.2010.22.

  • 30. Weichert D Maier G eds. Inelastic Behaviour of Structures under Variable Repeated Loads. Vienna: Springer Vienna; 2002. doi:10.1007/978-3-7091-2558-8.

  • 31. Weichert D Ponter A eds. Limit States of Materials and Structures. 1st ed. Springer Netherlands; 2009. doi:10.1007/978-1-4020-9634-1.

  • 32. Zouain N. Shakedown and Safety Assessment. In: Stein E de Borst R Hughes TJR eds. Encyclopedia of Computational Mechanics. Vol 2. Chichester UK: John Wiley & Sons Ltd; 2004:291-334. doi:10.1002/0470091355.ecm031.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 95 8
PDF Downloads 79 45 3