Retention of Afforestation Areas as Part of Flood Protection - Research Site and Methodology for Headwater Watershad in Poland / Retencja Leśna Zlewni Jako Element Ochrony Przeciwpowodziowej

Open access


Land use is considered as a non-structural, ecologically beneficial flood protection measure. Forest as one of the land use types has many useful applications which can be observed in detail on website project. It is scientifically proved that afforestation influences flood events with high probability of occurrence. However, it is still to be argued how to measure land use impact on the hydrological response of watershed and how it should be measured in an efficient and quantifiable way. Having the tool for such an impact measurement, we can build efficient land management strategies. It is difficult to observe the impact of land use on flood events in the field.Therefore, one of the possible solutions is to observe this impact indirectly by means of hydrological rainfall-runoff models as a proxy for the reality. Such experiments were conducted in the past. Our study aims to work on the viability assessment, methodology and tools that allow to observe this impact with use of selected hydrological models and readily available data in Poland. Our first reaserch site is located within headwaters of the Kamienna river watershed. This watershed has been affected by ecological disaster, which resulted in loss of 65% of forest coverage. Our proposed methodology is to observe this transformation and its effect on the watershed response to heavy precipitation and therefore change in the flood risk.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kerstin F. et al. The Vulnerability Sourcebook: Concept and guidelines for standardised vulnerability. Bonn and Eschborn : Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH 2014.

  • 2. Dumieński G. Pasiecznik-Dominiak A. and Tiukało A. Społecznoekonomiczna ocena zagrożenia powodziowego gmin w Polsce. [book auth.] Katarzyny Piekarskiej i Bartosza Kaźmierczaka Praca zbiorowa pod red. Andrzeja Kotowskiego. Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska. Tom 6. Wrocław : Oficyna Wydawnicza Politechniki Wrocławskiej 2015 pp. 100-125.

  • 3. IPCC et al. Summary for policymakers. In: Climate Change 2014: Impacts Adaptation and Vulnerability. Cambridge New York : Cambridge University Press 2014.

  • 4. Holling C.S. Resilience and stability of ecological systems. Annual Review of Ecological Systems. 4 1973 s. 390-405.

  • 5. Parry M.L. et al. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York : Cambridge University Press 2007.

  • 6. 2001 Commission Communication of 15 May. A Sustainable Europe for a Better World: A European Union Strategy for Sustainable Development’ (Commission proposal to the Gothenburg European Council . [COM(2001) 264 final - not published in the Official Journal]. 2001.

  • 7. Union European. Natural Water Retention Measures. European Union : s.n. 2014. ISBN: 978-92-79-44497-5.

  • 8. Ministerstwo Środowiska. POLITYKA EKOLOGICZNA PAŃSTWA W LATACH 2009-2012 Z PERSPEKTYWĄ DO ROKU 2016 . Warszawa : s.n. 2008.

  • 9. EU. Natural Water Retention Measures. Luxemburg : Office for Official Publications of the European Communities 2014.

  • 10. Verbeirena B. et al. Assessing urbanisation effects on rainfall-runoff using a remote sensing supported modelling strategy. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION. 21 2013 92-102.

  • 11. Banasik K. Wpływ zagospodarowania terenu na odpływ i transport fluwialny w małych zlewniach zurbanizowanych. Warszawa : Wydawnictwo SGGW 2009.

  • 12. Guillemette F. et al. Rainfall generated storm-flow response to clearcutting a boreal forest: peak flow comparision with 50 world-wide basin studies. Journal of Hydrology. 302 2005 167-153.

  • 13. Grant G. et al. Effects of Forest Practices on Peak Flows and Consequent Channel Response: A State-of-Science Re-port for Western Oregon and Washington. s.l. : United States Department of Agriculture 2008.

  • 14. Alila Y. et al. Forests and floods: A new paradigm sheds light on age-old controversies. WATER RESOURCES RESEARCH. 45 2009 Vol. W08416.

  • 15. Seibert J. and McDonnell J. Land-cover impacts on streamflow: a changedetection modelling approach that incorporates parameter uncertainty. Hydrological Science Journal. 55 2010 Vol. 3 316-332.

  • 16. Beven K. Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System Sciences. 4 2000 203-213.

  • 17. McDonnell J. et al. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour. Res. 43 2007 Vol. W07301 doi:10.1029/2006WR005467.

  • 18. Fenicia F. et al. Catchment properties function and conceptual model representation: is there a correspondence? Hydrological Processes. 28 2014 2451-2467 DOI: 10.1002/hyp.9726.

  • 19. Plate E. Classification of hydrological models for flood management. Hydrol. Earth Syst. Sci. 2009 Vol. 13 1939-1951.

  • 20. Jajarmizadeh M. Harun S. and Salarpour M. A Review on Theoretical Consideration and Types of Models in Hydrology. Journal of Environmental Science and Technology. 5 2012 249-261.

  • 21. J.C. Refsgaard. and Knudsen J. Operational validation and intercomparison of different types of hydrological. Water Resources Research. 32 1996 Vol. 7 2189-2202.

  • 22. Gao H. et al. Testing the realism of a topography-driven model (FLEXTopo) in the nested catchments of the Upper Heihe China. Hydrol. Earth Syst. Sci. 18 2014 Vol. 18 1895-1915.

  • 23. Euser T. et al. A framework to assess the realism of model structures using hydrological signatures. Hydrol. Earth Syst. Sci. 2013 Vol. 17 1893-1912.

  • 24. Szalińska W. et al. Środowisko obliczeniowe operacyjnego modelu typu opad-odpływ. . Monografie KGW PAN. Z. XX 2014 Vols. s. 293-307 ISSN 0867-7816.

  • 25. Beven K.J. and Kirkby M.J. A physically based variable contributing area model of basin hydrology. Hydrologic Science Bulletin. 24 1979 Vol. 1 43-69.

  • 26. Savenije H.H.G. Topography driven conceptual modelling (FLEX-Topo). Hydrol. Earth Syst. Sci. 14 2010 Vols. doi:10.5194/hess-14-2681-2010 2681-2692.

  • 27. Bergström S. The HBV model - its structure and applications. SMHI Hydrology. RH No.4 1992 35 pp.

  • 28. VAN DER KNIJFF J.M. YOUNIS J. and DE ROO A.P.J. LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. International Journal of Geographical Information Science. No. 2 2010 Vols. Vol. 2 DOI: 10.1080/13658810802549154 189-212 .

  • 29. WFLOW platform documentation. [Online] Accessible in February 2016.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 262 69 5
PDF Downloads 116 60 1