Photocatalytic Coatings - Promising Way to Improve a Quality of Urban Building Surfaces

Tereza Sázavská 1 , Jan Šubrt 2 , Michaela Jakubičková 1 , and František Peterka 1
  • 1 Technical University of Liberec, Studentská 1402/2 461 17 Liberec, Czech Republic
  • 2 Institute of Inorganic Chemistry AS Czech Republic, v.v.i., Husinec-Řež 1001, 25068 Řež, Czech Republic

Abstract

With the increasing air pollutants particularly in the cities the deteriorating conditions of the buildings accelerate. One of the non-invasive and cheap promising ways how to prevent the buildings against the aged processes caused by biological pollutants or smog exhalation is the innovation of suitable photocatalytic coatings. This work focuses on the characterization of prepared photocatalytic nanocomposite TiO2-SiO2 system to be applied on the building objects in order to improve a quality of their surfaces. The structure and the texture characterization of prepared nanocomposite were determined by electron microscopy (SEM, TEM + EDS). The photocatalytic activity of the composite was determined considering the self-cleaning ability and the antibacterial activity. For self-cleaning characterization the methylene blue degradation was measured. These self-cleaning properties were tested on the various types of supports, which are commonly used in the building facades. To estimate antibacterial and biocidal activity the Gram-negative bacterium Escherichia coli and the gram-positive bacteria Staphylococcus aureus were used. Both methods were done according to standard ISO tests. Next to the laboratory testing the application of the composite under the real condition was implemented. There were treated parts of the concrete outside wall with the composite and after more than one year the colour changed analysis of the wall surface was characterized.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37-38. DOI: 10.1038/238037a0.

  • [2] Caballero L, Whitehead K A, Allen NS, Verran J. Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol Chem. 2009;202:92-98. DOI: 10.1016/j.jphotochem.2008.11.005.

  • [3] Göransson G, Jirkovský JS, Krtil P, Ahlberg E. Oxidation of propenol on nanostructured Ni and NiZn electrodes in alkaline solution. Electrochimica Acta. 2014;139:345-355. DOI: 10.1016/j.electacta.2014.06.169.

  • [4] Venkata Subba Rao K, Rachel A, Subrahmanyam M, Boule P. Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl Catal B Environ. 2003;46:77-85. DOI: 10.1016/S0926-3373(03)00199-1.

  • [5] Rasalingam S, Peng R, Koodali RT. Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials. J Nanomater. 2014;e617405. DOI: 10.1155/2014/617405.

  • [6] Zhang L, Mohamed HH, Dillert R, Bahnemann D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J Photochem Photobiol C Photochem Rev. 2012;13:263-276. DOI: 10.1016/j.jphotochemrev.2012.07.002.

  • [7] Radecka M, Rekas M, Trenczek-Zajac A, Zakrzewska K. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J Power Sources. 2008;181:46-55. DOI: 10.1016/j.jpowsour.2007.10.082.

  • [8] Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal Today. 2009;147:1-59. DOI: 10.1016/j.cattod.2009.06.018.

  • [9] Mohamed HH, Bahnemann DW. The role of electron transfer in photocatalysis: Fact and fictions. Appl Catal B Environ. 2012;128:91-104. DOI: 10.1016/j.apcatb.2012.05.045.

  • [10] Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63:515-582. DOI: 10.1016/j.surfrep.2008.10.001.

  • [11] Zielińska-Jurek A, Zaleska A. Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase. Catal Today. 2014;230:104-111. DOI: 10.1016/j.cattod.2013.11.044.

  • [12] Chang S, Liu W. The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Appl Catal B Environ. 2014;156-157:466-475. DOI: 10.1016/j.apcatb.2014.03.044.

  • [13] Sun H, Wang S, Ang HM, Tadé MO, Li Q. Halogen element modified titanium dioxide for visible light photocatalysis. Chem Eng J. 2010;162:437-447. DOI: 10.1016/j.cej.2010.05.069.

  • [14] Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331-349. DOI: 10.1016/j.apcatb.2012.05.036.

  • [15] Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. J Photochem Photobiol C Photochem Rev. 2012;13:169-189. DOI: 10.1016/j.jphotochemrev.2012.06.001.

  • [16] Chen X, Mao SS. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev. 2007; 2891-2959. DOI: 10.1021/cr0500535.

  • [17] Monteiro RAR, Lopez, FVZ, Silva AMT, Angelo J, Silva GV, Mendes AM, et al. Are TiO2-based exterior paints useful catalysts for gas-phase photooxidation processes? A case study on n-decane abatement for air detoxification. Appl Catal B Environ. 2014;147:988-999. DOI: 10.1016/j.apcatb.2013.09.031.

  • [18] Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C. Photocatalytic properties of titania powders prepared by hydrothermal method. Appl Catal B Environ. 2004;54:51-58. DOI: 10.1016/j.apcatb.2004.06.006.

  • [19] La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AN, Guzzi MT, et al. Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat. 2012;74:186-191. DOI: 10.1016/j.porgcoat.2011.12.008.

  • [20] La Russa MF, Macchia A, Ruffolo SA, De Leo F, Barberio M, Barone P, et al. Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int Biodeterior Biodegrad. 2014;96:87-96. DOI: 10.1016/j.ibiod.2014.10.002.

  • [21] Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard Ch, Herrmann JM, et al. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ. 2001;31:145-157. DOI: 10.1016/S0926-3373(00)00276-9.

OPEN ACCESS

Journal + Issues

Search