Speed Profile Prediction in Intelligent Transport Systems Exemplified by Vehicle to Vehicle Interactions

Open access

Abstract

Intelligent Transport Systems (ITS) fall in the framework of cyberphysical systems due to the interaction between physical systems (vehicles) and distributed information acquisition and dissemination infrastructure. With the accelerated development of wireless Vehicle-to-Vehicle (V2V) and Vehicle-to Infrastructure (V2I) communications, the integrated acquiring and processing of information is becoming feasible at an increasingly large scale. Accurate prediction of the traffic information in real time, such as the speed, flow, density has important applications in many areas of Intelligent Transport systems. It is a challenging problem due to the dynamic changes of the traffic states caused by many uncertain factors along a travelling route. In this paper we present a V2V based Speed Profile Prediction approach (V2VSPP) that was developed using neural network learning to predict the speed of selected agents based on the received signal strength values of communications between pairs of vehicles. The V2VSPP was trained and evaluated by using traffic data provided by the Australian Centre for Field Robotics. It contains vehicle state information, vehicle-to-vehicle communications and road maps with high temporal resolution for large numbers of interacting vehicles over a long time period. The experimental results show that the proposed approach (V2VSPP) has the capability of providing accurate predictions of speed profiles in multi-vehicle trajectories setup.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chen L.-W. Y.-H. Peng Y.-C. Tseng. An Infrastructure-Less Framework for Preventing Rear-End Collisions by Vehicular Sensor Networks. - IEEE Commun. Lett. Vol. 15 2011 No 3 pp. 358-360.

  • 2. Controller Area Network (CAN-Bus). http://www.gaw.ru/data/Interface/CAN_BUS.PDF

  • 3. Hafner M. D. Cunningham L. Caminiti D. D. Vecchio. Cooperative Collision Avoidance at Intersections: Algorithms and Experiments. - IEEE Trans. Intell. Transp. Syst. Vol. 14 2013 No 3 pp. 1162-1175.

  • 4. Dia H. An Object-Oriented Neural Network Approach to Short-Term Traffic Forecasting. - Eur.J. Oper. Res. Vol. 131 2001 No 2 pp. 253-261.

  • 5. IEEE 1609-Family of Standards for Wireless Access in Vehicular Environments (WAVE). http://vii.path.berkeley.edu/1609_wave/

  • 6. Katsargyri G.-E. I. V. Kolmanovsky J. Michelini. Optimally Controlling Hybrid Electric Vehicles Using Path Forecasting. - In: Proc. of Amer. Control Conf. 2009 pp. 4613-4617.

  • 7. Lee E. J. Kim W. Yoon. Traffic Speed Prediction under Weekday Time and Neighboring Links’ Speed: Back Propagation Neural Network Approach. - In: Lecture Notes in Computer Science. Berlin Germany Springer-Verlag 2007 pp. 626-635.

  • 8. Levinson J. J. Askeland J. Becker J. Dolson D. Held S. Kammel J. Kolter D. Langer O. Pink V. Pratt M. Sokolsky G. Stanek D. Stavens A. Teichman M. Werling S. Thrun. Towards Fully Autonomous Driving: Systems and Algorithms. - In: Proc. of IEEE Intelligent Vehicles Symposium (IV) 2011 pp. 163-168.

  • 9. Milanés V. J. Perez E. Onieva C. Gonzalez. Controller for Urban Intersections Based on Wireless Communications and Fuzzy Logic. - IEEE Trans. Intell. Transp. Syst. Vol. 11 2010 No 1 pp. 243-248.

  • 10. Nasim R. A. Kassler. Distributed Architectures for Intelligent Transport Systems: A Survey. - In: Proc. of 12th IEEE 2nd Symposium on Network Cloud Computing and Applications 2012.

  • 11. On-Board Diagnostics (OBD). http://www.epa.gov/otaq/regs/im/obd/index.htm

  • 12. Park J. Y. L. Murphey J. G. Kristinsson R. McGee M. L. Kuang T. Phillips.Real Time Vehicle Speed Prediction Using a Neural Network Traffic Model. - In: Proc. of IEEE IJCNN 2011 pp. 2991-2996.

  • 13. Park J. Y. L. Murphey R. McGee J. G. Kristinsson M. L. Kuang A. M.Phillips. Intelligent Trip Modeling for the Prediction of an Origin-Destination Traveling Speed Profile. - IEEE Transactions on Intelligent Transportation Systems Vol. 15 2014.

  • 14. Ploeg J. S. Shladover H. Nijmeijer N. Vande Wouw. Introduction to the Special Issue on the 2011 Grand Cooperative Driving Challenge. - IEEE Trans. Intell. Transp. Syst. Vol. 13 2012 No 3 pp. 989-993.

  • 15. Qiu W. L. Zhang. Integration of Cyber Physical System Based on Aspect Oriented. - JCIT Vol. 7 2012 No 22 pp. 368- 375.

  • 16. Qureshi K. N. A. H. Abdullah. A Survey on Intelligent Transportation Systems. - Middle- East Journal of Scientific Research Vol. 15 2013 No 5 pp. 629-642.

  • 17. Rauch A. S. Maier F. Klanner K. Dietmayer. Inter-Vehicle Object Association for Cooperative Perception Systems. - In: Proc. of 16th Int. IEEE Conf. Intelligent Transportation Systems 2013 pp. 893-898.

  • 18. Sadek A. W. Artificial Intelligence Applications in Transportation. Transport Research CIRCULAR Number EC-113 2007.

  • 19. Schulze M. J. Z. Riveros. Impact of Electrical Vehicles on Strategic Planning of Energy Infrastructure. - In: Proc. of Int. Conf. POWERCON 24-28 October 2010 pp. 1-6.

  • 20. Sang C. U. Suh J. Tanik J. N. Carbone A. Eroglu. (Eds) Applied Cyber-Physical Systems. Springer 2014.

  • 21. Sivaraman S. M. M. Trivedi. Towards Cooperative Predictive Driver Assistance. - In: Proc. of 16th Int. IEEE Conf. Intelligent Transportation Systems 2013 pp. 1719-1724.

  • 22. Song Z. Y. Q. Chen C. R. Sastry N. C. Tas. Optimal Observation for Cyber-Physical Systems. Springer 2009.

  • 23. Sotelo M. J. W. C. VanLint U. Nunes L. Vlacic M. Chowdhury. Introduction to the Special Issue on Emergent Cooperative Technologies in Intelligent Transportation Systems. - IEEE Trans. Intell. Transp. Syst. Vol. 13 2012 No 1 pp. 1-5.

  • 24. Tacconi D. et al. Using Wireless Sensor System Networks to Support Intelligent Transportation Systems. - Ad Hoc Networks Vol. 8 2010 No 5 pp. 462-473.

  • 25. Trivedi P. K. Deshmukh M. Shrivastava. Cloud Computing for Intelligent Transportation System. - International Journal of Soft Computing and Engineering (IJSCE) Vol. 2 2012 Issue 3 ISSN: 2231-2307.

  • 26. Unbehauen H. Identification of Nonlinear Systems Control Systems. - Robotics and Automation. Vol. VI. Identification of Nonlinear Systems - Encyclopedia Of Life Support Systems (EOLSS) 2009.

  • 27. Verdone R. et al. Wireless Sensor and Actuator Networks: Technologies Analysis and Design. -Academic Press. Ad Hoc Networks Vol. 8 2010 No 5 pp. 462-473.

  • 28. Ward J. S. Worrall G. Agamennoni E. Nebot. The Warrigal Dataset: Multi-Vehicle Trajectories and V2V Communications. - IEEE Intelligent Transportation Systems Magazine Vol. 109 2014.

  • 29. Worrall S. G. Agamennoni J. Nieto E. Nebot. A Context-Based Approach to Vehicle Behavior Prediction. - IEEE Intell. Transp. Syst. Mag. Vol. 4 2012 No 3 pp. 32-44.

  • 30. Wua F.-J. Y.-F. Kaob Y.-C. Tseng. From Wireless Sensor Networks Towards Cyber Physical Systems. - Pervasive and Mobile Computing Vol. 7 2011 Vol. 9 2009 No 11 pp. 8824-8830.

  • 31. Yang X. M. Behroozi O. A. Olatunbosun. A Neural Network Approach to Predicting Car Tyre Micro-Scale and Macro-Scale Behaviour. - Journal of Intelligent Learning Systems and Applications 2014 No 6 pp. 11-20.

  • 32. Ye F. M. Adams S. Roy. V2V Wireless Communication Protocol for Rear-End Collision Avoidance on Highways. - In: Int’l Conf. Communications 2008 pp. 375-379.

Search
Journal information
Impact Factor


CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.215
Source Normalized Impact per Paper (SNIP) 2018: 0.595

Mathematical Citation Quotient (MCQ) 2018: 0.01

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 253 126 0
PDF Downloads 169 100 0