A Continuous–Time Markov Chain Modeling Cancer–Immune System Interactions

Open access


In the present paper we propose two mathematical models describing, respectively at the microscopic level and at the mesoscopic level, a system of interacting tumor cells and cells of the immune system. The microscopic model is in terms of a Markov chain defined by the generator, the mesoscopic model is developed in the framework of the kinetic theory of active particles. The main result is to prove the transition from the microscopic to mesoscopic level of description.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. A. R. A. Anderson and P. K. Maini Special issue: Mathematical oncology Bull. Math. Biol. vol. 280 pp. 945{953 2018.

  • 2. P. M. Altrock L. L. Liu and F. Michor The mathematics of cancer: integrating quantitative models Nat. Rev. Cancer vol. 15 pp. 730{745 2015.

  • 3. M. P. Little Cancer models genomic instability and somatic cellular darwinian evolution Biology Direct vol. 5 pp. 1{19 2010.

  • 4. A. Konstorum A. T. Vella A. J. Adler and R. C. Laubenbacher Addressing current challenges in cancer immunotherapy with mathematical and computational modelling J. R. Soc. Interface vol. 14p. 20170150 2017.

  • 5. M. Lachowicz Individually-based Markov processes modeling nonlinear systems in mathematical biology Nonlinear Anal. Real World Appl. vol. 12 pp. 2396{2407 2011.

  • 6. J. Banasiak and M. Lachowicz Methods of small parameter in mathematical biology. Basel: Birkhauser 2014.

  • 7. N. Bellomo A. Bellouquid and E. De Angelis The modelling of immune competition by generalized kinetic (boltzmann) models: review and research perspectives Math. Comput. Modelling vol. 37pp. 65{86 2003.

  • 8. A. Bellouquid E. De Angelis and D. Knopoff From the modeling of the immune hallmarks of cancerto a black swan in biology Math. Models Methods Appl. Sci. vol. 23 pp. 949{978 2013.

  • 9. E. De Angelis On the mathematical theory of post-darwinian mutations selection and evolution Math. Models Methods Appl. Sci vol. 24 pp. 2723{2742 2014.

  • 10. N. Bellomo Modeling Complex Living Systems - A Kinetic Theory and Stochastic Game Approach. Basel: Birkhauser 2008.

  • 11. N. Bellomo A. Bellouquid L. Gibelli and N. Outada A Quest Towards a Mathematical Theory of Living Systems. Basel: Birkhaauser 2017.

  • 12. N. Bellomo P. Degond and E. Tadmor eds. Active Particles Volume 1 - Advances in Theory Models and Applications. Basel: Birkhaauser 2017.

  • 13. A. D. Wentzell A course in the theory of stochastic processes. McGraw-Hill International 1981.

  • 14. D. Hanahan and R. A. Weinberg Hallmarks of cancer: The next generation Cell vol. 44 pp. 646{674 2011.

  • 15. A. Lasota and J. A. Yorke Exact dynamical systems and the frobenius-perron operator Trans. Amer. Math. Soc. vol. 273 pp. 375{384 1982.

  • 16. R. Rudnicki Models of population dynamics and their applications in genetics in From genetics tomathematics (M.Lachowicz and J. Mi_ekisz eds.) pp. 103-147 New Jersey: World Sci. 2009.

  • 17. M. Lachowicz A class of microscopic individual models corresponding to the macroscopic logistic growth Math. Methods Appl. Sci. vol. 41 pp. 8446{8454 2018.

  • 18. M. Lachowicz A class of individual-based models BIOMATH vol. 7 p. 1804127 2018.

  • 19. N. Bellomo and B. Carbonaro Toward a mathematical theory of living system focusing on developmental biology and evolution: A review and prospectives Physics of Life Reviews vol. 8 pp. 1{18 2011.

  • 20. S. De Lillo and N. Bellomo On the modeling of collective learning dynamics Appl. Math. Lett. vol. 24 pp. 1861{1866 2011.

  • 21. F. Michor Y. Iwasa and M. A. Nowak Dynamics of cancer progression Nature Reviews Cancer vol. 4 pp. 197{205 2004.

  • 22. P. C. Nowell Tumor progression: a brief historical perspective Seminars in Cancer Biology vol. 12 pp. 261{266 2002.

  • 23. R. A. Gatenby and T. L. Vincent Evolutionary model of carcinogenesis Cancer Research vol. 63 pp. 6212{1620 2003.

  • 24. L. Arlotti N. Bellomo and M. Lachowicz Kinetic equations modelling population dynamics Trans-port Theory Statist. Phys. vol. 29 pp. 125{139 2000.

  • 25. M. Lachowicz Links between microscopic and macroscopic descriptions in Lecture Notes Math. 1940 Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic (J. Banasiak V. Capasso M. A. J. Chaplain M. Lachowicz and J. Miekisz eds.) pp. 201{268 Berlin: Springer 2008.

Journal information
Impact Factor

CiteScore 2018: 0.95

SCImago Journal Rank (SJR) 2018: 0.324
Source Normalized Impact per Paper (SNIP) 2018: 0.73

Mathematical Citation Quotient (MCQ) 2018: 0.27

Target audience:

researchers in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, and medicine

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 276 276 15
PDF Downloads 164 164 4