Flux form Semi-Lagrangian methods for parabolic problems

Open access

Abstract

A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and stability analysis is proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection diffusion and nonlinear parabolic problems.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. M. Falcone and R. Ferretti Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. SIAM 2013.

  • 2. M. Camilli and M. Falcone An approximation scheme for the optimal control of diffusion processes. M2AN vol. 29 pp. 97-122 1995.

  • 3. G. Milstein The probability approach to numerical solution of nonlinear parabolic equations. Numerical Methods for Partial Differential Equations vol. 18 pp. 490-522 2002.

  • 4. G. Milstein and M. Tretyakov Numerical algorithms for semilinear parabolic equations with small parameter based on approximation of stochastic equations. Mathematics of Computation vol. 69 pp. 237-567 2000.

  • 5. G. Milstein and M. Tretyakov Numerical solution of the dirichlet problem for nonlinear parabolic equations by a probabilistic approach. IMA Journal of Numerical Analysis vol. 21 pp. 887-917 2001.

  • 6. R. Ferretti A technique for high-order treatment of diffusion terms in semi-Lagrangiaschemes. Communications in Computational Physics vol. 8 pp. 445-470 2010.

  • 7. J. Teixeira Stable schemes for partial differential equations: The one-dimensional diffusion equation. Journal of Computational Physics vol. 153 pp. 403-417 1999.

  • 8. L. Bonaventura R. Redler and R. Budich Earth System Modelling 2: Algorithms Code Infrastructure and Optimisation. New York: Springer Verlag 2012.

  • 9. L. Bonaventura and R. Ferretti Semi-Lagrangian methods for parabolic problems in divergence form. SIAM Journal of Scientific Computing vol. 36 pp. A2458 - A2477 2014.

  • 10. B. Leonard A. Lock and M. MacVean Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Monthly Weather Review vol. 124 pp. 2588-2606 November 1996.

  • 11. S. Lin and R. B. Rood Multidimensional flux-form semi-Lagrangian transport schemes. Monthly Weather Review vol. 124 pp. 2046-2070 September 1996.

  • 12. P. Frolkovic Flux-based method of characteristics for contaminant transport in owing groundwater. Computing and Visualization in Science vol. 5 pp. 73-83 2002.

  • 13. E. S. N. Crouseilles M. Mehrenberger Conservative semi-Lagrangian schemes for the Vlasov equation. Journal of Computational Physics vol. 229 pp. 1927-1953 2010.

  • 14. T. Phillips and A. Williams Conservative semi-Lagrangian finite volume schemes. Numerical Methods for Partial Differential Equations vol. 17 pp. 403-425 2001.

  • 15. M. Restelli L. Bonaventura and R. Sacco A semi-Lagrangian Discontinuous Galerkin method for scalar advection by incompressible flows Journal of Computational Physics vol. 216 pp. 195-215 2006.

  • 16. J. Qiu and C. Shu Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible ow. Journal of Computational Physics vol. 230 p. 863ï ½8892011

  • 17. J. Qiu and C. Shu Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system. Journal of Computational Physics vol. 230 p. 8386ï ½8409 2011.

  • 18. J. Rossmanith and D. Seal A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasovï ½ Poisson equations. Journal of Computational Physics vol. 230 pp. 6203-6232 2011.

  • 19. J. Dukowicz Conservative rezoning (remapping) for general quadrilateral meshes. Journal of Computational Physics vol. 54 pp. 411-424 1984.

  • 20. J. Laprise and R. Plante A class of semi-Lagrangian integrated-mass (SLIM) numerical transport algorithms. Monthly Weather Review vol. 123 pp. 553-565 1995.

  • 21. L. Leslie and R. Purser Three-dimensional mass-conserving semi-Lagrangian scheme employing foreward trajectories. Monthly Weather Review vol. 123 pp. 2551-2566 1995.

  • 22. B. Machenhauer and M. Olk The implementation of the semi-implicit scheme in cellintegrated semi-Lagrangian models. Atmosphere-Ocean vol. XXXV pp. 103-126 March 1997.

  • 23. M. Rancic An efficient conservative monotone remapping for semi-Lagrangian transport algorithms. Monthly Weather Review vol. 123 pp. 1213-1217 1995.

  • 24. J. Dukowicz and J. Baumgardner Incremental remapping as a transport/advection algorithm. Journal of Computational Physics vol. 160 pp. 318-335 2000.

  • 25. W. Lipscomb and T. Ringler An incremental remapping transport scheme on a spherical geodesic grid. Monthly Weather Review vol. 133 pp. 2335-2350 2005.

  • 26. R. Nair and B. Machenhauer The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere. Monthly Weather Review vol. 130 pp. 649-667 2002.

  • 27. M. Zerroukat N. Wood and A. Staniforth SLICE: a semi-Lagrangian inherently conserving and efficient scheme for transport problems. Quarterly Journal of the Royal Meteorological Society vol. 128 pp. 2801-2820 2002.

  • 28. M. Zerroukat N. Wood and A. Staniforth SLICE-S: A semi-Lagrangian inherently conserving and efficient scheme for transport problems on the sphere. Quarterly Journal of the Royal Meteorological Society vol. 130 pp. 2649-2664 2004.

  • 29. M. Zerroukat N. Wood and A. Staniforth A monotonic and positive-definite filter for a semi-Lagrangian inherently conserving and efficient (SLICE) scheme. Quarterly Journal of the Royal Meteorological Society vol. 131 pp. 2923-2936 2005.

  • 30. M. Zerroukat N. Wood A. Staniforth A. A. White and J. Thuburn An inherently conserving semi-implicit semi-Lagrangian discretisation of the shallow water equation on the sphere. Quarterly Journal of the Royal Meteorological Society vol. 135 pp. 1104-1116 2009.

  • 31. R. Ferretti Stability of some generalized Godunov schemes with linear high-order reconstructions. Journal of Scientific Computing vol. 57 pp. 213-228 2013.

  • 32. R. Ferretti Equivalence of semi-Lagrangian and Lagrange-Galerkin schemes under constant advection speed. Journal of Computational Mathematics vol. 28 pp. 461-473 2010.

  • 33. E. Carlini M. Falcone and R. Ferretti A Time - Adaptive Semi-Lagrangian Approximation to Mean Curvature Motion in Numerical mathematics and advanced applications pp. 732-739 Springer Berlin Heidelberg 2006.

  • 34. G. I. Barenblatt On self-similar motions of a compressible fluid in a porous medium Akad. Nauk SSSR. Prikl. Mat. Meh vol. 16 no. 6 pp. 79-6 1952.

  • 35. G. Tumolo and L. Bonaventura A semi-implicit semi-Lagrangian DG framework for adaptive numerical weather prediction. Quarterly Journal of the Royal Meteorological Society vol. 141 pp. 2582-2601 2015.

  • 36. G. Tumolo L. Bonaventura and M. Restelli A semi-implicit semi-Lagrangian p-adaptive discontinuous Galerkin method for the shallow water equations. Journal of Computational Physics vol. 232 pp. 46-67 2013.

Search
Journal information
Impact Factor


CiteScore 2018: 0.95

SCImago Journal Rank (SJR) 2018: 0.324
Source Normalized Impact per Paper (SNIP) 2018: 0.73

Mathematical Citation Quotient (MCQ) 2018: 0.27

Target audience:

researchers in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, and medicine

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 136 13
PDF Downloads 96 68 2