Electron transport in silicon nanowires having different cross-sections

Open access

Abstract

Transport phenomena in silicon nanowires with different cross-section are investigated using an Extended Hydrodynamic model, coupled to the Schrödinger-Poisson system. The model has been formulated by closing the moment system derived from the Boltzmann equation on the basis of the maximum entropy principle of Extended Thermodynamics, obtaining explicit closure relations for the high-order fluxes and the production terms. Scattering of electrons with acoustic and non polar optical phonons have been taken into account. The bulk mobility is evaluated for square and equilateral triangle cross-sections of the wire.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. D. Ferry S. Goodnick and J. Bird Transport in nanostructures. Cambridge University Press 2009.

  • 2. R. Juhasz N. Elfstro and J. Linnros Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction Nano Letters vol. 5 no. 2 pp. 275–280 2005.

  • 3. M. Lundstrom and J. Wang Does source-to-drain tunneling limit the ultimate scaling of mosfets? IEDM Tech. Dig. pp. 707–710 2002.

  • 4. E. Ramayya D. Vasileska S. Goodnick and I. Knezevic Electron mobility in silicon nanowires IEEE Trans. Nanotech. vol. 6 no. 1 pp. 113–117 2007.

  • 5. E. Ramayya D. Vasileska S. Goodnick and I. Knezevic Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering J. Appl. Phys. vol. 104 p. 063711 2008.

  • 6. E. Ramayya and I. Knezevic Self-consistent Poisson-Schrödinger-Monte Carlo solver: electron mobility in silicon nanowires J. Comput. Electr. vol. 9 pp. 206–210 2010.

  • 7. O. Muscato W. Wagner and V. Di Stefano Numerical study of the systematic error in Monte Carlo schemes for semiconductors ESAIM: M2AN vol. 44 no. 5 pp. 1049–1068 2010.

  • 8. O. Muscato W. Wagner and V. Di Stefano Properties of the steady state distribution of electrons in semiconductors Kinetic and Related Models vol. 4 no. 3 pp. 809–829 2011.

  • 9. O. Muscato V. Di Stefano and W. Wagner A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation Comput. Math. with Appl. vol. 65 no. 3 pp. 520–527 2013.

  • 10. M. Lenzi P. Palestri E. Gnani A. Gnudi D. Esseni L. Selmi and G. Baccarani Investigation of the transport properties of silicon nanowires using deterministic and Monte Carlo approaches to the solution of the boltzmann transport equation IEEE Trans. Electr. Dev. vol. 55 no. 8 pp. 2086–2096 2008.

  • 11. G. Ossig and F. Schuerrer Simulation of non-equilibrium electron transport in silicon quantum wires J. Comput. Electron. vol. 7 pp. 367–370 2008.

  • 12. O. Muscato and V. Di Stefano Hydrodynamic modeling of silicon quantum wires J. Comput. Electron. vol. 11 no. 1 pp. 45–55 2012.

  • 13. V. Di Stefano and O. Muscato Seebeck effect in silicon semiconductors Acta Appl. Math. vol. 122 no. 1 pp. 225–238 2012.

  • 14. O. Muscato and V. Di Stefano Hydrodynamic simulation of a n+ - n - n+ silicon nanowire Contin. Mech. Thermodyn. vol. 26 pp. 197–205 2014.

  • 15. T. Kuykendall P. Pauzauskie S. Lee Y. Zhang J. Goldberger and P. Yang Metalorganic chemical vapor deposition route to gan nanowires with triangular cross sections Nano Letters vol. 3 no. 8 pp. 1063–1066 2003.

  • 16. G. Pennelli and M. Piotto Fabrication and characterization of silicon nanowires with triangular cross section J. Appl. Phys. vol. 100 p. 054507 2006.

  • 17. G. Pennelli Top down fabrication of long silicon nanowire devices by means of lateral oxidation Microelec. Engineer. vol. 86 pp. 2139–2143 2009.

  • 18. G. Liang W. Huang C. S. Koong J.-S. Wang and J. Lan Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures J. Appl. Phys. vol. 107 p. 014317 2010.

  • 19. R. Khordad and H. Bahramiyan Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section J. Appl. Phys. vol. 115 p. 124314 2014.

  • 20. D. Jou J. Casas-Vázquez and G. Lebon Extended irreversible thermodynamics. Springer-Verlag 2001.

  • 21. O. Muscato R. Pidatella and M. Fischetti Monte Carlo and hydrodynamic simulation of a one dimensional n+ − nn+ silicon diode VLSI Design vol. 6 no. 1-4 pp. 247–250 1998.

  • 22. O. Muscato and V. Di Stefano Modeling heat generation in a submicrometric n+nn+ silicon diode J. Appl. Phys. vol. 104 no. 12 p. 124501 2008.

  • 23. O. Muscato and V. Di Stefano Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors J. Phys.A:Math. Theor. vol. 44 no. 10 p. 105501 2011.

  • 24. O. Muscato and V. Di Stefano An energy transport model describing heat generation and conduction in silicon semiconductors J. Stat. Phys. vol. 144 no. 1 pp. 171–197 2011.

  • 25. O. Muscato and V. Di Stefano Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations COMPEL vol. 30 no. 2 pp. 519–537 2011.

  • 26. G. Mascali and V. Romano A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle Math. Comp. Model. vol. 55 no. 3-4 pp. 1003–1020 2012.

  • 27. V. Camiola G. Mascali and V. Romano Numerical simulation of a double-gate mosfet with a subband model for semiconductors based on the maximum entropy principle Contin. Mech.Thermodyn. vol. 24 no. 4-6 pp. 417–436 2012.

  • 28. W.-K. Li and S. Blinder Solution of the Schrödinger equation for a particle in an equilateral triangle J. Math. Phys. vol. 26 no. 11 pp. 2784–2786 1985.

  • 29. S. Selberherr Analysis and Simulation of Semiconductor Devices. Springer 1984.

  • 30. C. Jacoboni C. Canali G. Ottaviani and A. Quaranta A review of some charge transport properties for silicon Solid State Electron vol. 20 no. 2 pp. 77–89 1977.

  • 31. O. Muscato and V. Di Stefano Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors J. Appl. Phys. vol. 110 no. 9 p. 093706 2011.

  • 32. O. Muscato and V. Di Stefano Electro-thermal behaviour of a sub-micron silicon diode Semicond. Sci. Tech. vol. 28 no. 2 p. 025021 2013.

  • 33. E. Ramayya L. Maurer A. Davoody and I. Knezevic Thermoelectric properties of ultrathin silicon nanowires Phys. Rev. B vol. 86 no. 11 p. 115328 2012.

  • 34. Z. Aksamija and I. Knezevic Thermoelectric properties of properties of silicon nanostructures J. Comput. Electron. vol. 9 pp. 173–179 2010.

  • 35. D. Jou V. Cimmelli and A. Sellito Nonlocal heat transport with phonons and electrons: Application to metallic nanowires Int. J. Heat Mass transf. vol. 55 no. 9-10 pp. 2338–2344 2012.

  • 36. A. Sellito V. Cimmelli and D. Jou Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires Int. J. Heat Mass transf. vol. 57 no. 1 pp. 109–116 2013.

  • 37. V. Cimmelli A. Sellito and D. Jou A nonlinear thermodynamic model for a breakdown of the onsager symmetry and the efficiency of thermo-electric conversion in nanowires Proc. Royal soc.A: Math. Phys. Eng. Sci. vol. 470 no. 2170 p. 20140265 2014.

  • 38. A. Sellito and V. Cimmelli Flux limiters in radial heat transport in silicon nanolayers J. Heat Transfer vol. 136 no. 7 p. 071301 2014.

Search
Journal information
Impact Factor


CiteScore 2018: 0.95

SCImago Journal Rank (SJR) 2018: 0.324
Source Normalized Impact per Paper (SNIP) 2018: 0.73

Mathematical Citation Quotient (MCQ) 2017: 0.38

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 342 280 8
PDF Downloads 139 115 5