Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: an overview

Open access

Abstract

We provide an overview on the problem of modeling heat transport at nanoscale and in far-from-equilibrium processes. A survey of recent results is summarized, and a conceptual discussion of them in the framework of Extended Irreversible Thermodynamics is developed.

1. A. Sellitto, V. A. Cimmelli and D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems. Berlin: Springer, 2016. DOI 10.1007/978-3-319-27206-1

2. G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of Extended Irreversible Thermodynamics, Journal of Non-Equilibrium Thermodynamics, vol. 39, pp. 35–59, 2014.

3. J. Casas-Vázquez and D. Jou, Temperature in nonequilibrium states: a review of open problems and current proposals, Reports on Progress in Physics, vol. 66, pp. 1937–2023, 2003.

4. V. A. Cimmelli and K. Frischmuth, Determination of material functions through second sound measurements in a hyperbolic heat conduction theory, Mathematical and Computer Modelling, vol. 24, pp. 19–28, 1996.

5. V. A. Cimmelli, A. Sellitto, and D. Jou, Nonlocal effects and second sound in a nonequilibrium steady state, Physical Review B, vol. 79, p. 014303 (13 pages), 2009.

6. V. A. Cimmelli, A. Sellitto, and D. Jou, Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations, Physical Review B, vol. 81, p. 054301 (9 pages), 2010.

7. V. A. Cimmelli, A. Sellitto, and D. Jou, Nonlinear evolution and stability of the heat flow in nanosystems: Beyond linear phonon hydrodynamics, Physical Review B, vol. 82, p. 184302 (9 pages), 2010.

8. H. Struchtrup, Macroscopic transport equations for rarefied gas flows: approximation methods in kinetic theory - Interaction of Mechanics and Mathematics. New York: Springer, 2005.

9. V. A. Cimmelli, A. Sellitto, and V. Triani, A new thermodynamic framework for second-grade Korteweg-type viscous fluids, Journal of Mathematical Physics, vol. 50, p. 053101 (16 pages), 2009.

10. V. A. Cimmelli, D. Jou, T. Ruggeri, and P. Ván, Entropy Principle and Recent Results in Non-Equilibrium Theories, Entropy, vol. 16, pp. 1756–1807, 2014.

11. P. Ván and T. Fülöp, “Universality in heat conduction theory: weakly nonlocal thermodynamics,” Annalen der Physik, vol. 524, pp. 470–478, 2012.

12. Z.-Y. Guo, Motion and Transfer of Thermal Mass - Thermal Mass and Thermon Gas, Journal of Engineering Thermophysics, vol. 27, pp. 631–634, 2006.

13. B.-Y. Cao and Z.-Y. Guo, Equation of motion of a phonon gas and non-Fourier heat conduction, Journal of Applied Physics, vol. 102, p. 053503 (6 pages), 2007.

14. Z.-Y. Guo and Q.-W. Hou, Thermal wave based on the thermomass model, ASME Journal of Heat Transfer, vol. 132, p. 072403 (6 pages), 2010.

15. D. Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behaviour. United Kingdom: Wiley, second ed., 2014.

16. D. Y. Tzou, Nonlocal behavior in phonon transport, International Journal of Heat and Mass Transfer, vol. 54, pp. 475–481, 2011.

17. R. A. Guyer and J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation, Physical Review, vol. 148, pp. 766–778, 1966.

18. R. A. Guyer and J. A. Krumhansl, Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals, Physical Review, vol. 148, pp. 778–788, 1966.

19. C. C. Ackerman and R. A. Guyer, Temperature pulses in dielectric solids, Annals of Physics, vol. 50, pp. 128–185, 1968.

20. V. A. Cimmelli and K. Frischmuth, Nonlinear effects in thermal wave propagation near zero absolute temperature, Physica B, vol. 355, pp. 147–157, 2005.

21. V. A. Cimmelli and K. Frischmuth, Gradient generalization to the extended thermodynamic approach and diffusive-hyperbolic heat conduction, Physica B, vol. 400, pp. 257–265, 2007.

22. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin: Springer, fourth revised ed., 2010.

23. J. M. Ziman, Electrons and Phonons. Oxford: Oxford University Press, 2001.

24. C. Cattaneo, Sulla conduzione del calore, Atti del Seminario Matematico e Fisico dell’Universitá di Modena, vol. 3, pp. 83–101, 1948.

25. V. A. Cimmelli, Different thermodynamic theories and different heat conduction laws, Journal of Non-Equilibrium Thermodynamics, vol. 34, pp. 299–333, 2009.

26. B. Straughan, Heat waves. Berlin: Springer, 2011.

27. G. Lebon, D. Jou, J. Casas-Vázquez, and W. Muschik, Weakly nonlocal and nonlinear heat transport in rigid solids, Journal of Non-Equilibrium Thermodynamics, vol. 23, pp. 176–191, 1998.

28. V. A. Cimmelli, An extension of Liu procedure in weakly nonlocal thermodynamics, Journal of Mathematical Physics, vol. 48, p. 113510 (13 pages), 2007.

29. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended irreversible thermodynamics revisited (1988-1998), Reports on Progress in Physics, vol. 62, pp. 1035–1142, 1999.

30. G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding nonequilibrium thermodynamics. Berlin: Springer, 2008.

31. G. Lebon, H. Machrafi, M. Grmela, and C. Dubois, An extended thermodynamic model of transient heat conduction at sub-continuum scales, Proceedings of the Royal Society of London, Section A, vol. 467, pp. 3241–3256, 2011.

32. F. X. Alvarez, D. Jou, and A. Sellitto, Phonon hydrodynamics and phonon-boundary scattering in nanosystems, Journal of Applied Physics, vol. 105, p. 014317 (5 pages), 2009.

33. A. Sellitto, F. X. Alvarez, and D. Jou, Second law of thermodynamics and phonon-boundary conditions in nanowires, Journal of Applied Physics, vol. 107, p. 064302 (7 pages), 2010.

34. A. Sellitto, F. X. Alvarez, and D. Jou, Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires, Journal of Applied Physics, vol. 107, p. 114312 (7 pages), 2010.

35. F. X. Alvarez, D. Jou, and A. Sellitto, Phonon boundary effects and thermal conductivity of rough concentric nanowires, ASME Journal of Heat Transfer, vol. 133, p. 022402 (7 pages), 2011.

36. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended irreversible thermodynamics of heat transport. A brief introduction, Proceedings of the Estonian Academy of Sciences, vol. 57, p. 118–126, 2008.

37. M. Lundstrom, Fundamentals of Carrier Transport. Cambridge: Cambridge University Press, 2000.

38. D. Jou and L. Restuccia, Mesoscopic transport equations and contemporary thermodynamics: an introduction, Contemporary Physics, vol. 52, pp. 465–474, 2011.

39. R. Luzzi, A. R. Vasconcellos, J. Casas-Vázquez, and D. Jou, Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics, Physica A, vol. 234, pp. 699–714, 1997.

40. J. M. Criado-Sancho, D. Jou, and J. Casas-Vázquez, Nonequilibrium kinetic temperatures in flowing gases, Physics Letters A, vol. 350, pp. 339–341, 2006.

41. D. Jou, V. A. Cimmelli, and A. Sellitto, Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers, Physics Letters A, vol. 373, pp. 4386–4392, 2009.

42. S. I. Serdyukov, Higher order heat and mass transfer equations and their justification in extended irreversible thermodynamics, Theoretical Foundations of Chemical Engineering, vol. 47, pp. 89–103, 2013.

43. M. Ferrer and D. Jou, Higher-order fluxes and the speed of thermal waves, International Journal of Heat and Mass Transfer, vol. 34, pp. 3055–3060, 1991.

44. V. A. Cimmelli and P. Ván, The effects of nonlocality on the evolution of higher order fluxes in nonequilibrium thermodynamics, Journal of Mathematical Physics, vol. 46, p. 112901 (15 pages), 2005.

45. V. A. Cimmelli and W. Kosiński, Non-equilibrium semi-empirical temperature in materials with thermal relaxation, Archives of Mechanics, vol. 47, pp. 753–767, 1991.

46. D. D. Joseph and L. Preziosi, Heat waves, Reviews in Modern Physics, vol. 61, pp. 41–73, 1989.

47. W. Dreyer and H. Struchtrup, Heat pulse experiments revisited, Continuum Mechanics and Thermodynamics, vol. 5, pp. 3–50, 1993.

48. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. New York: Springer, second ed., 1998.

49. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics, Journal of Applied Physics, vol. 110, p. 063504 (6 pages), 2011.

50. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, General expression for entropy production in transport processes based on the thermomass model, Physical Review E, vol. 85, p. 061107 (8 pages), 2012.

51. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, Temperature in nonequilibrium states and non-Fourier heat conduction, Physical Review E, vol. 87, p. 032150 (8 pages), 2013.

52. D. Y. Tzou and Z.-Y. Guo, Nonlocal behavior in thermal lagging, International Journal of Thermal Sciences, vol. 49, pp. 1133–1137, 2010.

53. M. Wang, N. Yang, and Z.-Y. Guo, Non-Fourier heat conductions in nanomaterials, Journal of Applied Physics, vol. 110, p. 064310 (7 pages), 2011.

54. A. Sellitto and V. A. Cimmelli, A continuum approach to thermomass theory, ASME Journal of Heat Transfer, vol. 134, p. 112402 (6 pages), 2012.

55. A. Sellitto and V. A. Cimmelli, Flux limiters in radial heat transport in silicon nanolayers, ASME Journal of Heat Transfer, vol. 136, p. (8 pages), 2014.

56. M. Wang, B.-Y. Cao, and Z.-Y. Guo, General heat conduction equations based on the thermomass theory, Frontiers in Heat and Mass Transfer, vol. 1, p. 013004 (8 pages), 2010.

57. A. Sellitto, V. A. Cimmelli, and D. Jou, Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems, Physica D, vol. 241, pp. 1344–1350, 2012.

58. D. Y. Tzou, A unified field approach for heat conduction from micro-to-macro-scales, ASME Journal of Heat Transfer, vol. 117, pp. 8–16, 1995.

59. D. Y. Tzou, Longitudinal and transverse phonon transport in dielectric crystals, ASME Journal of Heat Transfer, vol. 136, p. 042401 (5 pages), 2014.

60. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano. Boca Raton: CRC Press, 2005.

61. D. M. Rowe (ed.), CRC Handbook of Thermoelectrics. Florida: Boca Raton: CRC Press LLC, 1995.

62. F. Koechlin and B. Bonin, Parametrisation of the Niobium thermal conductivity in the superconducting state, in Proceedings of the 1995 Workshop on RF Superconductivity, Gif-sur-Yvette, France (B. Bonin, ed.), (New York), pp. 665–669, Gordon and Breach, 1996.

63. K. E. Goodson and M. I. Flik, Electron and Phonon Thermal Conduction in Epitaxial High-Tc Superconducting Films, ASME Journal of Heat Transfer, vol. 115, pp. 17–25, 1993.

64. N. Stojanovic, D. H. S. Maithripala, J. M. Berg, and M. Holtz, Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law, Physical Review B, vol. 82, p. 075418 (9 pages), 2010.

65. A. Sellitto, V. A. Cimmelli, and D. Jou, Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires, International Journal of Heat and Mass Transfer, vol. 57, pp. 109–116, 2013.

66. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard-III, and J. R. Heath, Silicon nanowires as efficient thermoelectric materials, Nature, vol. 451, pp. 168–171, 2008.

67. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys, Nano Letters, vol. 8, pp. 4670–4674, 2008.

68. Z. M. Zhang, Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007.

69. S. Volz (ed.), Thermal Nanosystems and Nanomaterials (Topics in Applied Physics). Berlin: Springer, 2010.

70. N. Balkan, Hot Electrons in Semiconductors - Physics and Devices. New York: Oxford University Press, 1998.

71. G. Chen, Nanoscale Energy Transport and Conversion - A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford: Oxford University Press, 2005.

72. B. D. Coleman and E. H. Dill, Thermodynamic restrictions on the constitutive equations of electromagnetic theory, Zeitschrift für angewandte Mathematik und Physik, vol. 22, pp. 691–702, 1971.

73. Z. Lin, L. V. Zhigilei, and V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Physical Review B, vol. 77, p. 075133 (17 pages), 2008.

74. H. Gouin and T. Ruggeri, Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids, Physical Review E, vol. 78, p. 016303 (7 pages), 2008.

75. T. Ruggeri and J. Lou, Heat conduction in multi-temperature mixtures of fluids: the role of the average temperature, Physics Letters A, vol. 373, pp. 3052–3055, 2009.

76. T. Ruggeri, Multi-temperature mixture of fluids, Theoretical and Applied Mechanics, vol. 36, pp. 207–238, 2009.

77. L. X. Benedict, S. G. Louie, and M. L. Cohen, Heat capacity of carbon nanotubes, Solid State Communications, vol. 100, pp. 177–180, 1996.

78. G. Benenti, K. Saito, and G. Casati, Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry, Physical Review Letters, vol. 106, p. 230602 (4 pages), 2011.

79. S. J. Putterman, Superfluid Hydrodynamics. Amsterdam: North Holland, 1974.

80. D. Benin and H. J. Maris, Phonon heat transport and Knudsen’s minimum in liquid helium at low temperatures, Physical Review B, vol. 18, pp. 3112–3125, 1978.

81. R. J. Donnelly, Quantized vortices in helium II. Cambridge, UK: Cambridge University Press, 1991.

82. D. Jou, G. Lebon, and M. S. Mongioví, Second sound, superfluid turbulence, and intermittent effects in liquid helium II, Physical Review B, vol. 66, p. 224509 (9 pages), 2002.

83. J. Wilks, The properties of Liquid and Solid Helium. Oxford: Clarendon Press, 1967.

84. S. W. Van Sciver, Helium Cryogenics. Berlin: Springer, second ed., 2012.

85. M. S. Mongioví, Extended Irreversible Thermodynamics of liquid helium II, Physical Review B, vol. 48, pp. 6276–6283, 1993.

86. L. D. Landau, The theory of superfluidity of He II, Journal of Physics, vol. 60, pp. 356–358, 1941.

87. D. S. Greywall, Thermal-conductivity measurements in liquid 4He below 0.7K, Physical Review B, vol. 23, pp. 2152–2168, 1981.

88. L. D. Landau and E. M. Lishitz, Mechanics of fluids. Oxford: Pergamon, 1985.

89. M. Sciacca, A. Sellitto, and D. Jou, Transition to ballistic regime for heat transport in helium II, Physics Letters A., vol. 378, pp. 2471–2477, 2014.

90. M. S. Mongioví and D. Jou, Thermodynamical derivation of a hydrodynamical model of inhomogeneous superfluid turbulence, Phys. Rev. B, vol. 75, p. 024507 (14 pages), 2007.

91. M. Sciacca, M. S. Mongioví, and D. Jou, A mathematical model of counterflow superfluid turbulence describing heat waves and vortex-density waves, Mathematical and Computer Modelling, vol. 48, pp. 206–221, 2008.

92. L. Saluto, M. S. Mongioví, and D. Jou, Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component, Zeitschrift für angewandte Mathematik und Physik, vol. 65, pp. 531–548, 2014.

93. F. X. Alvarez, J. Alvarez-Quintana, D. Jou, and J. Rodriguez-Viejo, Analytical expression for thermal conductivity of superlattices, Journal of Applied Physics, vol. 107, p. 084303 (8 pages), 2010.

94. T. C. H. P. J. Taylor, M. P. Walsh, and B. E. La Forge, Quantum dot superlattice thermoelectric materials and devices, Science, vol. 297, pp. 2229–2232, 2002.

95. O. L. Lazarenkova and A. A. Balandin, Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice, Physical Review B, vol. 66, p. 245319 (9 pages), 2002.

96. A. A. Balandin and O. L. Lazarenkova, Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Nature Materials, vol. 82, p. 415 (3 pages), 2003.

97. J. Alvarez-Quintana, F. X. Alvarez, J. Rodriguez-Viejo, D. Jou, P. D. Lacharmoise, A. Bernardi, A. R. Goñi, and M. I. Alonso, Cross-plane thermal conductivity reduction of vertically uncorrelated Ge/Si quantum dot superlattices, Applied Physics Letters, vol. 93, p. 013112 (3 pages), 2008.

98. A. Sellitto, A phonon-hydrodynamic approach to thermal conductivity of Si-Ge quantum dot superlattices, Applied Mathematical Modelling, vol. 39, pp. 4687–4698, 2015.

99. V. Birman and L. W. Byrd, Modeling and Analysis of Functionally Graded Materials and Structures, Applied Mechanics Reviews, vol. 60, pp. 197–216, 2007.

100. V. L. Kuznetsov, Functionally graded materials for termoelectric applications, in Thermoelectrics Handbook: Macro to Nano – Sec. 38, D. M. Rowe Ed., CRC Press, Boca Raton, 2005.

101. V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin, and D. M. Rowe, High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation, Journal of Materials Science, vol. 37, pp. 2893–2897, 2002.

102. E. Müller, Č. Drašar, J. Schilz, and W. A. Kaysser, Functionally graded materials for sensor and energy applications, Materials Science and Engineering, vol. A362, pp. 17–39, 2003.

103. G. Jeffrey Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials, vol. 7, pp. 105–114, 2008.

104. D. Jou, I. Carlomagno, and V. A. Cimmelli, A thermodynamic model for heat transport and thermal wave propagation in graded systems, Physica E, vol. 73, pp. 242–249, 2015.

105. A. Sellitto, V. A. Cimmelli, and D. Jou, Entropy flux and anomalous axial heat transport at the nanoscale, Physical Review B, vol. 87, p. 054302 (7 pages), 2013.

106. V. A. Cimmelli, I. Carlomagno, and A. Sellitto, Non-Fourier heat transfer with phonons and electrons in a circular thin layer surrounding a hot nanodevice, Entropy, vol. 17, pp. 5157–5170, 2015.

Journal Information


CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.324
Source Normalized Impact per Paper (SNIP) 2017: 0.532

Mathematical Citation Quotient (MCQ) 2017: 0.38

Target Group

researchers in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, and medicine

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 431 431 186
PDF Downloads 426 426 233