Inhomogeneous vortex tangles in counterflow superfluid turbulence: flow in convergent channels

Open access

Abstract

We investigate the evolution equation for the average vortex length per unit volume L of superfluid turbulence in inhomogeneous flows. Inhomogeneities in line density L andincounterflowvelocity V may contribute to vortex diffusion, vortex formation and vortex destruction. We explore two different families of contributions: those arising from asecondorder expansionofthe Vinenequationitself, andthose whichare notrelated to the original Vinen equation but must be stated by adding to it second-order terms obtained from dimensional analysis or other physical arguments.

1. P. Granieri, B. Baudouy, A. Four, F. Lentijo, A. Mapelli, P. Petagna, and D. Tommasini, Steady-state heat transfer through micro-channels in pressurized He II, AIP Conf. Proc., vol. 1434, pp. 231–238, 2011. DOI:10.1063/1.4706925.

2. J. Maurer and P. Tabeling, Local investigation of superfluid turbulence, EPL (Europhysics Letters), vol. 43, no. 1, p. 29, 1998.

3. P.-E. Roche, P. Diribarne, T. Didelot, O. Français, L. Rousseau, and H. Willaime, Vortex density spectrum of quantum turbulence, EPL (Europhysics Letters), vol. 77, no. 6, p. 66002, 2007.

4. A. W. Baggaley, L. K. Sherwin, C. F. Barenghi, and Y. A. Sergeev, Thermally and mechanically driven quantum turbulence in helium II, Phys. Rev. B, vol. 86, p. 104501, 2012.

5. R. J. Donnelly, Quantized vortices in helium II. Cambridge: Cambridge University Press, 1991.

6. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence. Berlin: Springer, 2001.

7. M. Tsubota, M. Kobayashi, and H. Takeuchi, Quantum hydrodynamics, Phys. Rep., vol. 522, pp. 191–238, 2012. DOI:10.1016/j.physrep.2012.09.007.

8. S. van Sciver, Helium cryogenics. Berlin: Springer, second ed., 2012.

9. S. K. Nemirovskii, Quantum turbulence: Theorethical and numerical problems, Phys. Rep., vol. 524, pp. 85–202, 2013. DOI:10.1016/j.physrep.2012.10.005.

10. W. F. Vinen, Mutual friction in a heat current in liquid helium II-III. theory of the mutual friction, Proc. Roy. Soc. London, vol. A240, pp. 493–515, 1957. DOI:10.1098/rspa.1957.0191.

11. J. Castiglione, P. J. Murphy, J. T. Tough, F. Mayot, and Y. Pomeau, Propagating and stationary superfluid turbulent fronts, Phys. B, vol. 100, pp. 575–595, 1995. DOI:10.1007/BF00751526.

12. J. F. Kafkalidis, G. Klinich III, and J. T. Tough, Superfluid turbulence in a nonuniform rectangular channel, Rep. Prog. Phys., vol. 50, p. 15909 (20 pages), 1994. DOI:10.1103/PhysRevB.50.15909.

13. G. Klinich III, J. F. Kafkalidis, and J. T. Tough, Superfluid Turbulence in Converging and Diverging Rectangular Channels, J. Low Temp. Phys., vol. 107, pp. 327–346, 1997. DOI:10.1007/BF02397461.

14. J. P. Murphy, J. Castiglione, and J. T. Tough, Superfluid turbulence in a nonuniform circular channel, J. Low Temp. Phys., vol. 92, pp. 307–334, 1993. DOI:10.1007/BF00682294.

15. J. F. Kafkalidis, G. Klinich III, and J. T. Tough, The vortex line density in nonuniform superfluid turbulence, Physica B, vol. 194–196, pp. 717–718, 1994. DOI:10.1016/0921-4526(94)90688-2.

16. S. K. Nemirovskii, Diffusion of inhomogeneous vortex tangle and decay of superfluid turbulence, Phys. Rev. B, vol. 81, p. 64512 (10 pages), 2010. DOI:10.1103/PhysRevB.81.064512.

17. S. K. Nemirovskii, Propagation of a Turbulent Fronts in Quantum Fluids, J. Low Temp. Phys., vol. 162, pp. 347–353, 2011. DOI:10.1007/s10909-010-0252-x.

18. L. Kondaurova and S. K. Nemirovskii, Numerical study of decay of vortex tangles in superfluid helium at zero temperature, Phys. Rev. B, vol. 86, p. 134506 (13 pages), 2012. DOI:10.1103/PhysRevB.86.134506.

19. J. A. Geurst, Hydrodynamics of quantum turbulence in He II: Vinen’s equation derived from energy and impulse of vortex tangle, Physica B, vol. 154, pp. 327–343, 1989. DOI:10.1016/0921-4526(89)90167-1.

20. J. A. Geurst, Hydrodynamic theory of superfluid turbulence in He II and Schwarz’s vortex modelling, Physica A, vol. 183, pp. 279–303, 1992. http://EconPapers.repec.org/RePEc:eee:phsmap:v:183:y:1992:i:3:p:279-303.

21. J. A. Geurst and H. van Beelen, Hydrodynamics of superfluid turbulence in He II: three-dimensional theory, Physica A, vol. 206, pp. 58–92, 1994. http://EconPapers.repec.org/RePEc:eee:phsmap:v:206:y:1994:i:1:p:58-92.

22. M. S. Mongiovì and D. Jou, Thermodynamical derivation of a hydrodynamical model of inhomogeneous superfluid turbulence, Phys. Rev. B, vol. 75, p. 24507 (14 pages), 2007. DOI:10.1103/PhysRevB.75.024507.

23. L. Saluto, M. S. Mongiovì, and D. Jou, Vortex diffusion and vortex-line hysteresis in radial quantum turbulence, Physica B, vol. 440C, pp. 99–103, 2014. DOI:10.1016/j.physb.2014.01.041.

24. K. W. Schwarz, Three-dimensional vortex dynamics in superfluid He 4: Homogeneous superfluid turbulence, Phys. Rev. B, vol. 38, pp. 2398–2417, 1988. DOI:10.1103/PhysRevB.38.2398.

25. L. Saluto, D. Jou, and M. S. Mongiovì, Thermodynamic approach to vortex production and diffusion in inhomogeneous superfluid turbulence, Physica A, vol. 406, pp. 272–280, 2014. DOI:10.1016/j.physa.2014.03.062.

26. L. J. Campbell, Driven, dissipative superfluids: Radial counter-flow of rotating 4He, Phys. Rev. B, vol. 36, pp. 6773–6781, 1987. DOI:10.1103/PhysRevB.36.6773.

27. M. S. Mongiovì and D. Jou, Generalization of Vinen’s equation including transition to superfluid turbulence, J. Phys., vol. 17, pp. 4423–4440, 2005. http://stacks.iop.org/0953-8984/17/i=28/a=003.

28. L. Saluto, M. S. Mongiovì, and D. Jou, Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component, Z. Angew. Math. Phys., vol. 65, pp. 531–548, 2014. DOI:10.1007/s00033-013-0372-7.

29. L. Saluto, Stationary heat flux profile in turbulent helium II in a semi-infinite cylindrical channel, in Bollettino di Matematica Pura e Applicata, vol. V, pp. 133–144, Aracne, 2012.

30. M. Sciacca, M. S. Mongiovì, and D. Jou, Alternative Vinen equation and its extension to rotating counterflow superfluid turbulence, Physica B, vol. 4038, pp. 2215–2224, 2008. DOI:10.1016/j.physb.2007.12.001.

31. K. P. Martin and J. T. Tough, Evolution of superfluid turbulence in thermal counterflow, Phys. Rev. B, vol. 27(5), pp. 2788–2799, 1983. DOI:10.1103/PhysRevB.27.2788.

Journal Information


CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.324
Source Normalized Impact per Paper (SNIP) 2017: 0.532

Mathematical Citation Quotient (MCQ) 2017: 0.38

Target Group

researchers in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, and medicine

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 127 13
PDF Downloads 70 63 9