Extension of tumor fingers: A comparison between an individual-cell based model and a measure theoretic approach

Open access


The invasive capability is fundamental in determining the malignancy of a solid tumor. In particular, tumor invasion fronts are characterized by different morphologies, which result both from cell-based processes (such as cell elasticity, adhesive properties and motility) and from subcellular molecular dynamics (such as growth factor internalization, ECM protein digestion and MMP secretion). Of particular relevance is the development of tumors with unstable fingered morphologies: they are in fact more aggressive and hard to be treated than smoother ones as, even if their invasive depth is limited, they are difficult to be surgically removed. The phenomenon of malignant fingering has been reproduced with several mathematical approaches. In this respect, we here present a qualitative comparison between the results obtained by an individual cell-based model (an extended version of the cellular Potts model) and by a measure-based theoretic method. In particular, we show that in both cases a fundamental role in finger extension is played by intercellular adhesive forces and taxis-like migration.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. B. Alberts A. Johnson J. Lewis M. Raff K. Roberts and P. Walter Molecular Biology of the Cell 4th ed. Garland Science 2002.

  • 2. H. Osada and T. Takahashi Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer Oncogene vol. 21 pp. 7421–7434 2002.

  • 3. W. Mueller-Klieser Tumor biology and experimental therapeutics Crit. Rev. Oncol. Hematol. vol. 36 pp. 123–139 2002.

  • 4. P. Vaupel and M.Hockel Blood supply oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance (review) Int. J. Oncol. vol. 17 pp. 869–879 2000.

  • 5. J. M. Brown Tumor microenvironment and the response to anticancer therapy Cancer Biol. Ther. vol. 1 pp. 453–458 2002.

  • 6. S. S. Cross Fractals in pathology J. Pathol. vol. 182 pp. 1–8 1997.

  • 7. G. Landini Y. Hirayama T. J. Li and M. Kitano Increased fractal complexity of the epithelial connective tissue interface in the tongue of 4nq0-treated rats Pathol. Res. Pract. vol. 196 pp. 251– 258 2000.

  • 8. A. Balter R. M. H. Merks N. J. Poplawski M. Swat and A. J. Glazier The Glazier-Graner-Hogeweg model: extensions future directions and opportunities for further study in Single-Cell-Based Models in Biology and Medicine (A. R. A. Anderson M. A. J. Chaplain and K. A. Rejniak eds.) Mathematics and Biosciences in Interactions pp. 151–167 Birkaüser 2007.

  • 9. J. A. Glazier and F. Graner Simulation of the differential adhesion driven rearrangement of biological cells Phys. Rev. E vol. 47 pp. 2128–2158 1993.

  • 10. J. A. Glazier A. Balter and N. J. Poplawski Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model in Single-Cell-Based Models in Biology and Medicine (A. R. A. Anderson M. A. J. Chaplain and K. A. Rejniak eds.) Mathematics and Biosciences in Interactions pp. 79–106 Birkaüser 2007.

  • 11. F. Graner and J. A. Glazier Simulation of biological cell sorting using a two dimensional extended Potts model Phys. Rev. Lett. vol. 69 pp. 2013–2017 1992.

  • 12. M. Scianna and L. Preziosi Multiscale developments of the cellular Potts model Multiscale Model. Simul. vol. 10 pp. 342–382 2012.

  • 13. E. Ising Beitrag zur theorie des ferromagnetismus Z. Physik. vol. 31 p. 253 1925.

  • 14. R. B. Potts Some generalized order-disorder transformations Proc. Camb. Phil. Soc. vol. 48 pp. 106– 109 1952.

  • 15. R. M. H. Merks and P. Koolwijk Modeling morphogenesis in silico and in vitro: Towards quantitative predictive cell-based modeling Math. Model. Nat. Phenom. vol. 4 pp. 149–171 2009.

  • 16. M. Scianna L. Munaron and L. Preziosi A multiscale hybrid approach for vasculogenesis and related potential blocking therapies Prog. Biophys. Mol. Biol. vol. 160 pp. 450–462 2010.

  • 17. S. Turner and J. A. Sherratt Intercellular adhesion and cancer invasion: A discrete simulation using the extended potts model J. Theor. Biol. vol. 216 pp. 85–100 2002.

  • 18. N. Metropolis A. Rosenbluth M. N. Rosenbluth A. H. Teller and E. Teller Equation of state calculations by fast computing machines J. Chem. Phys. vol. 21 pp. 1087–1092 1953.

  • 19. M. S. Steinberg Does differential adhesion govern self-assembly processes in histogenesis? equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells J. Exp. Zool. vol. 173 pp. 395–433 1970.

  • 20. S. Huang and D. E. Ingber The structural and mechanical complexity of cell-growth control Nat. Cell Biol. vol. 1 pp. 131–138 1999.

  • 21. N. J. Savill and P. Hogeweg Modelling morphogenesis: From single cells to crawling slugs J. Theor. Biol. vol. 184 pp. 118–124 1997.

  • 22. G. Murphy and J. Gavrilovic Proteolysis and cell migration: Creating a path? Curr. Opin. Cell Biol. vol. 11 pp. 614–621 1999.

  • 23. A. Colombi M. Scianna and A. Tosin Differentiated cell behavior: a multiscale approach using measure theory J. Math. Biol. 2015 in press. doi: 10.1007/s00285-014-0846-z.

  • 24. A. Colombi M. Scianna and L. Preziosi A measure-theoretic model for collective cell migration and aggregation Math. Model. Nat. Phenom. vol. 1 no. 10 pp. 32–63 2015.

  • 25. E. Cristiani B. Piccoli and A. Tosin Multiscale modeling of granular flows with application to crowd dynamics Multiscale Model. Simul. vol. 9 no. 1 pp. 155–182 2011.

  • 26. B. Piccoli and F. Rossi Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes Acta Appl. Math. vol. 124 no. 1 pp. 73–105 2013.

  • 27. B. Piccoli and A. Tosin Time-evolving measures and macroscopic modeling of pedestrian flow Arch. Ration. Mech. Anal. vol. 199 no. 3 pp. 707–738 2011.

  • 28. A. Tosin and P. Frasca Existence and approximation of probability measure solutions to models of collective behaviors Netw. Heterog. Media vol. 6 no. 3 pp. 561–596 2011.

  • 29. R. Gatenby K. Smallbone P. Maini F. Rose J. Averill R. Nagle L. Worrall and R. Gillies Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer Br. J. Cancer vol. 97 pp. 646–653 2007.

  • 30. J. Smolle Fractal tumor stromal border in a nonequilibrium growth model Anal. Quant. Cytol. Histol. vol. 20 pp. 7–13 1998.

  • 31. S. M. Wise J. S. Lowengrub H. B. Frieboes and V. Cristini Three-dimensional multispecies nonlinear tumor growth–i model and numerical method Int. J. Oncol. vol. 253 pp. 524–543 2008.

  • 32. A. R. A. Anderson A. M. Weaver P. T. Cummings and V. Quaranta Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment Cell vol. 127 no. 5 pp. 905–915 2006.

Journal information
Impact Factor

CiteScore 2018: 0.95

SCImago Journal Rank (SJR) 2018: 0.324
Source Normalized Impact per Paper (SNIP) 2018: 0.73

Mathematical Citation Quotient (MCQ) 2018: 0.27

Target audience:

researchers in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, and medicine

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 195 195 9
PDF Downloads 94 94 12