Extension of tumor fingers: A comparison between an individual-cell based model and a measure theoretic approach

Abstract

The invasive capability is fundamental in determining the malignancy of a solid tumor. In particular, tumor invasion fronts are characterized by different morphologies, which result both from cell-based processes (such as cell elasticity, adhesive properties and motility) and from subcellular molecular dynamics (such as growth factor internalization, ECM protein digestion and MMP secretion). Of particular relevance is the development of tumors with unstable fingered morphologies: they are in fact more aggressive and hard to be treated than smoother ones as, even if their invasive depth is limited, they are difficult to be surgically removed. The phenomenon of malignant fingering has been reproduced with several mathematical approaches. In this respect, we here present a qualitative comparison between the results obtained by an individual cell-based model (an extended version of the cellular Potts model) and by a measure-based theoretic method. In particular, we show that in both cases a fundamental role in finger extension is played by intercellular adhesive forces and taxis-like migration.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th ed. Garland Science, 2002.

  • 2. H. Osada and T. Takahashi, Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer, Oncogene, vol. 21, pp. 7421–7434, 2002.

  • 3. W. Mueller-Klieser, Tumor biology and experimental therapeutics, Crit. Rev. Oncol. Hematol., vol. 36, pp. 123–139, 2002.

  • 4. P. Vaupel and M.Hockel, Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance (review), Int. J. Oncol., vol. 17, pp. 869–879, 2000.

  • 5. J. M. Brown, Tumor microenvironment and the response to anticancer therapy, Cancer Biol. Ther., vol. 1, pp. 453–458, 2002.

  • 6. S. S. Cross, Fractals in pathology, J. Pathol., vol. 182, pp. 1–8, 1997.

  • 7. G. Landini, Y. Hirayama, T. J. Li, and M. Kitano, Increased fractal complexity of the epithelial connective tissue interface in the tongue of 4nq0-treated rats, Pathol. Res. Pract., vol. 196, pp. 251– 258, 2000.

  • 8. A. Balter, R. M. H. Merks, N. J. Poplawski, M. Swat, and A. J. Glazier, The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study, in Single-Cell-Based Models in Biology and Medicine (A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, eds.), Mathematics and Biosciences in Interactions, pp. 151–167, Birkaüser, 2007.

  • 9. J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, vol. 47, pp. 2128–2158, 1993.

  • 10. J. A. Glazier, A. Balter, and N. J. Poplawski, Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model, in Single-Cell-Based Models in Biology and Medicine (A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, eds.), Mathematics and Biosciences in Interactions, pp. 79–106, Birkaüser, 2007.

  • 11. F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two dimensional extended Potts model, Phys. Rev. Lett., vol. 69, pp. 2013–2017, 1992.

  • 12. M. Scianna and L. Preziosi, Multiscale developments of the cellular Potts model, Multiscale Model. Simul., vol. 10, pp. 342–382, 2012.

  • 13. E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Physik., vol. 31, p. 253, 1925.

  • 14. R. B. Potts, Some generalized order-disorder transformations, Proc. Camb. Phil. Soc., vol. 48, pp. 106– 109, 1952.

  • 15. R. M. H. Merks and P. Koolwijk, Modeling morphogenesis in silico and in vitro: Towards quantitative, predictive, cell-based modeling, Math. Model. Nat. Phenom., vol. 4, pp. 149–171, 2009.

  • 16. M. Scianna, L. Munaron, and L. Preziosi, A multiscale hybrid approach for vasculogenesis and related potential blocking therapies, Prog. Biophys. Mol. Biol., vol. 160, pp. 450–462, 2010.

  • 17. S. Turner and J. A. Sherratt, Intercellular adhesion and cancer invasion: A discrete simulation using the extended potts model, J. Theor. Biol., vol. 216, pp. 85–100, 2002.

  • 18. N. Metropolis, A. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., vol. 21, pp. 1087–1092, 1953.

  • 19. M. S. Steinberg, Does differential adhesion govern self-assembly processes in histogenesis? equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. Exp. Zool., vol. 173, pp. 395–433, 1970.

  • 20. S. Huang and D. E. Ingber, The structural and mechanical complexity of cell-growth control, Nat. Cell Biol., vol. 1, pp. 131–138, 1999.

  • 21. N. J. Savill and P. Hogeweg, Modelling morphogenesis: From single cells to crawling slugs, J. Theor. Biol., vol. 184, pp. 118–124, 1997.

  • 22. G. Murphy and J. Gavrilovic, Proteolysis and cell migration: Creating a path?, Curr. Opin. Cell Biol., vol. 11, pp. 614–621, 1999.

  • 23. A. Colombi, M. Scianna, and A. Tosin, Differentiated cell behavior: a multiscale approach using measure theory, J. Math. Biol., 2015, in press. doi: 10.1007/s00285-014-0846-z.

  • 24. A. Colombi, M. Scianna, and L. Preziosi, A measure-theoretic model for collective cell migration and aggregation, Math. Model. Nat. Phenom., vol. 1, no. 10, pp. 32–63, 2015.

  • 25. E. Cristiani, B. Piccoli, and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., vol. 9, no. 1, pp. 155–182, 2011.

  • 26. B. Piccoli and F. Rossi, Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., vol. 124, no. 1, pp. 73–105, 2013.

  • 27. B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., vol. 199, no. 3, pp. 707–738, 2011.

  • 28. A. Tosin and P. Frasca, Existence and approximation of probability measure solutions to models of collective behaviors, Netw. Heterog. Media, vol. 6, no. 3, pp. 561–596, 2011.

  • 29. R. Gatenby, K. Smallbone, P. Maini, F. Rose, J. Averill, R. Nagle, L. Worrall, and R. Gillies, Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer, Br. J. Cancer, vol. 97, pp. 646–653, 2007.

  • 30. J. Smolle, Fractal tumor stromal border in a nonequilibrium growth model, Anal. Quant. Cytol. Histol., vol. 20, pp. 7–13, 1998.

  • 31. S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini, Three-dimensional multispecies nonlinear tumor growth–i model and numerical method, Int. J. Oncol., vol. 253, pp. 524–543, 2008.

  • 32. A. R. A. Anderson, A. M. Weaver, P. T. Cummings, and V. Quaranta, Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, vol. 127, no. 5, pp. 905–915, 2006.

OPEN ACCESS

Journal + Issues

Search