On weak regularity requirements of the relaxation modulus in viscoelasticity

Open access

Abstract

The existence and uniqueness of solution to a one-dimensional hyperbolic integro-differential problem arising in viscoelasticity is here considered. The kernel, in the linear viscoelasticity equation, represents the relaxation function which is characteristic of the considered material. Specifically, the case of a kernel, which does not satisfy the classical regularity requirements is analysed. This choice is suggested by applications according to the literature to model a wider variety of materials. A notable example of kernel, not satisfying the classical regularity requirements, is represented by a wedge continuous function. Indeed, the linear integro-differential viscoelasticity equation, characterised by a suitable wedge continuous relaxation function, is shown to give the classical linear wave equation via a limit procedure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. G. Amendola S. Carillo and A. Manes Classical free energies of a heat conductor with memory and the minimum free energy for its discrete spectrum model Bollettino U. M.l. sect. B vol.3 pp. 421-446 2010.

  • 2. G. Amendola S. Carillo J.M. Golden and A. Manes Viscoelastic fluids: free energies differential problems and asymptotic behaviour Discrete and Continuous Dynamical Systems - Series B vol. 19 pp.1815-1835 2014.

  • 3. M. Bertsch P. Podio-Guidugli and V. Valente On the dynamics of deformable ferromagnets I. Global weak solutions for soft ferromagnets at rest Ann. Mat. Pura Appl. (IV) vol. CLXXIX pp. 331–360 2001.

  • 4. W.F. Brown Magnetoelastic Interactions Springer Tracts in Natural Philosophy vol.9 Springer Verlag 1966.

  • 5. S. Carillo V. Valente and G. Vergara Caffarelli A result of existence and uniqueness for an integro-differential system in magneto-viscoelasticity Applicable Analisys vol. 90 pp. 1791-1802 2010.

  • 6. S. Carillo V. Valente and G. Vergara Caffarelli An existence theorem for the magnetic-viscoelastic problem Discrete and Continuous Dynamical Systems Series S. vol. 5 pp. 435-447 2012.

  • 7. S. Carillo V. Valente and G. Vergara Caffarelli A linear viscoelasticity problem with a singular memory kernel: an existence and uniqueness result Differential and Integral Equations vol. 26 pp. 1115-1125 2013.

  • 8. S. Carillo Singular kernel problems in materials with memory Meccanica vol. 50 pp. 603-615 2015.

  • 9. S. Carillo A 3-dimensional singular kernel problem in viscoelasticity: an existence result Atti della Accademia Peloritana dei Pericolanti Classe di Scienze Fisiche Matematiche e Naturali vol. 97 (S1) 13 pp. 2019. DOI: 10.1478/AAPP.97S1A3.

  • 10. S. Carillo M. Chipot V. Valente and G. Vergara Caffarelli A magneto-viscoelasticity problem with a singular memory kernel Nonlinear Analysis Series B: Real World Applications vol. 35C pp. 200-210 2017.

  • 11. S. Carillo V. Valente and G. Vergara Caffarelli Heat conduction with memory: a singular kernel problem Evolution Equations and Control Theory vol. 3 pp. 399-410 2014.

  • 12. M. Chipot I. Shafrir V. Valente and G. Vergara Caffarelli A nonlocal problem arising in the study of magneto-elastic interactions Boll. UMI Serie IX I pp. 197-222 2008.

  • 13. M. Chipot I. Shafrir V. Valente and G. Vergara Caffarelli On a hyperbolic-parabolic system arising in magnetoelasticity J. Math. Anal. Appl. vol. 352 pp. 120-131 2009.

  • 14. C.M. Dafermos An abstract Volterra equation with applications to linear viscoelasticity J. Diff. Equations vol. 7 pp. 554-569 1970.

  • 15. C.M. Dafermos Asymptotic stability in viscoelasticity Arch. Rat. Mech. Anal. vol. 37 pp. 297-308 1970.

  • 16. M. De Angelis On the transition from parabolicity to hyperbolicity for a nonlinear equation under Neumann boundary conditions Meccanica Article in Press 2018.

  • 17. A. DeSimone and G. Dolzmann Existence of minimizers for a variational problem in two-dimensional nonlinear magneto-elasticity Arch. Rational Mech. Anal. vol. 144 pp. 107-120 1998.

  • 18. M. Fabrizio G. Gentili and J.M. Golden Non-isothermal free energies for linear theories with memory Mathematical and Computer Modelling vol. 39 pp. 219-253 2004.

  • 19. M. Fabrizio and A. Morro Mathematical problems in linear viscoelasticity SIAM Studies in Applied Mathematics 12 Philadelphia PA 1992.

  • 20. G. Gentili Maximum recoverable work minimum free energy and state space in linear viscoelasticity Quart. Appl. Math. vol. 60 pp. 153–182 2002.

  • 21. C. Giorgi and A. Morro Viscoelastic solids with unbounded relaxation function Continuum Mechanics And Thermodynamics vol. 4 pp. 151-165 1992.

  • 22. D. Kinderlehrer Magnetoelastic interactions in variational methods for discontinuous structures Prog. Nonlinear Differential Equations Appl. vol. 25 Birkhauser Basel pp. 177-189 1996.

  • 23. Md. Mahiuddin Md. Imran H. Khan Nghia Duc Pham and M.A. Karim Development of fractional viscoelastic model for characterising viscoelastic properties of food material during drying Food Bioscience vol.23 pp. 45-53 2018.

  • 24. A. Rassoli N. Fatouraee and R. Guidoin Structural model for viscoelastic properties of pericardial bioprosthetic valves Artificial Organs vol. 42 pp. 630-639 2018.

  • 25. A. Shahin-Shamsabadi et al. Mechanical material and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity Materials Science and Engineering: C vol. 90 pp. 280-288 2018.

  • 26. V. Valente and G. Vergara Caffarelli On the dynamics of magneto-elastic interactions: existence of solutions and limit behavior Asymptotic Analysis vol. 51 pp. 319-333 2007.

  • 27. G. Vergara Caffarelli Dissipativity and uniqueness for the one-dimensional dynamical problem of linear viscoelasticity (Italian) Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. vol. 83 pp.483-488 1988.

  • 28. G. Vergara Caffarelli Dissipativity and existence for the one-dimensional dynamical problem of linear viscoelasticity (Italian) Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. vol. 82 pp. 489-496 1988.

  • 29. Z. Stropek and K. Golacki Viscoelastic response of apple flesh in a wide range of mechanical loading rates International Agrophysics vol. 32 pp. 335-340 2018.

Search
Journal information
Impact Factor


CiteScore 2018: 0.95

SCImago Journal Rank (SJR) 2018: 0.324
Source Normalized Impact per Paper (SNIP) 2018: 0.73

Mathematical Citation Quotient (MCQ) 2018: 0.27

Target audience:

researchers in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, and medicine

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 155 17
PDF Downloads 103 103 1