Quantum graphs and dimensional crossover: the honeycomb

Open access


We summarize features and results on the problem of the existence of Ground States for the Nonlinear Schrödinger Equation on doubly-periodic metric graphs. We extend the results known for the two–dimensional square grid graph to the honeycomb, made of infinitely-many identical hexagons. Specifically, we show how the coexistence between one–dimensional and two–dimensional scales in the graph structure leads to the emergence of threshold phenomena known as dimensional crossover.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. K. Ruedenberg and C. W. Scherr Free-electron network model for conjugated systems. I. Theory The Journal of Chemical Physics vol. 21 no. 9 pp. 1565–1581 1953.

  • 2. F. A. Mehmeti Nonlinear Waves in Networks. Mathematical Research Series Akademie Verlag 1994.

  • 3. R. Adami C. Cacciapuoti D. Finco and D. Noja Fast solitons on star graphs Reviews in Mathematical Physics vol. 23 no. 04 pp. 409–451 2011.

  • 4. M. Keel and T. Tao Endpoint Strichartz estimates American Journal of Mathematics vol. 120 no. 5 pp. 955–980 1998.

  • 5. C. Kenig and F. Merle Global well-posedness scattering and blow-up for the energy critical focusing non-linear Schrödinger equation in the radial case Inventiones mathematicae vol. 166 no. 3 pp. 645– 675 2006.

  • 6. S. N. Bose Plancks gesetz und lichtquantenhypothese Zeitschrift für Physik vol. 26 pp. 178–181 Dec 1924.

  • 7. A. Einstein Quantentheorie des einatomigen idealen Gases. No. 2 in Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse Verlag d. Akad. d. Wiss. 1924.

  • 8. T. Cazenave Semilinear Schrödinger Equations. Courant lecture notes in mathematics American Mathematical Society 2003.

  • 9. T. Cazenave and P. L. Lions Orbital stability of standing waves for some nonlinear Schrödinger equations Communications in Mathematical Physics vol. 85 no. 4 pp. 549–561 1982.

  • 10. V. E. Zakharov and B. Shabat Exact theory of two–dimensional self–focusing and one–dimensional self–modulation of waves in nonlinear media Journal of Experimental and Theoretical Physics vol. 34 no. 1 pp. 62–71 1972.

  • 11. R. Adami C. Cacciapuoti D. Finco and D. Noja On the structure of critical energy levels for the cubic focusing NLS on star graphs Journal of Physics A: Mathematical and Theoretical vol. 45 p. 192001 apr 2012.

  • 12. R. Adami E. Serra and P. Tilli NLS ground states on graphs Calculus of Variations and Partial Differential Equations vol. 54 pp. 743–761 Sep 2015.

  • 13. S. Dovetta and L. Tentarelli Ground states of the L2-critical NLS equation with localized nonlinearity on a tadpole graph Operator Theory: Advances and Applications. to appear.

  • 14. J. L. Marzuola and D. E. Pelinovsky Ground state on the dumbbell graph Applied Mathematics Research eXpress vol. 2016 no. 1 pp. 98–145 2016.

  • 15. D. Noja D. Pelinovsky and G. Shaikhova Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph Nonlinearity vol. 28 no. 7 pp. 2343–2378 2015.

  • 16. C. Cacciapuoti S. Dovetta and E. Serra Variational and stability properties of constant solutions to the NLS equation on compact metric graphs Milan Journal of Mathematics vol. 86 no. 2 pp. 305– 327 2018.

  • 17. S. Dovetta Existence of infinitely many stationary solutions of the L2–subcritical and critical NLSE on compact metric graphs Journal of Differential Equations vol. 264 no. 7 pp. 4806–4821 2018.

  • 18. S. Dovetta and L. Tentarelli L2–critical NLS on noncompact metric graphs with localized nonlinearity: topological and metric features Calculus of Variations and Partial Differential Equations 2019. to appear.

  • 19. E. Serra and L. Tentarelli Bound states of the NLS equation on metric graphs with localized nonlinearities Journal of Differential Equations vol. 260 no. 7 pp. 5627–5644 2016.

  • 20. E. Serra and L. Tentarelli On the lack of bound states for certain NLS equations on metric graphs Nonlinear Analysis: Theory Methods and Applications vol. 145 pp. 68–82 2016.

  • 21. L. Tentarelli NLS ground states on metric graphs with localized nonlinearities Journal of Mathematical Analysis and Applications vol. 433 no. 1 pp. 291–304 2016.

  • 22. R. Adami E. Serra and P. Tilli Negative energy ground states for the L2 -critical NLSE on metric graphs Communications in Mathematical Physics vol. 352 pp. 387–406 May 2017.

  • 23. W. Borrelli R. Carlone and L. Tentarelli Nonlinear Dirac equation on graphs with localized non- linearities: Bound states and nonrelativistic limit SIAM Journal on Mathematical Analysis vol. 51 pp. 1046–1081 01 2019.

  • 24. W. Borrelli R. Carlone and L. Tentarelli An overview on the standing waves of nonlinear Schrödinger and Dirac equations on metric graphs with localized nonlinearity Symmetry vol. 11 no. 2 2019.

  • 25. S. Gilg D. Pelinovsky and G. Schneider Validity of the NLS approximation for periodic quantum graphs Nonlinear Differential Equations and Applications NoDEA vol. 63 no. 6 p. 30 2016.

  • 26. A. Pankov Nonlinear Schrödinger equations on periodic metric graphs Discrete e Continuous Dynamical Systems vol. 38 no. 2 pp. 697–714 2018.

  • 27. D. Pelinovsky and G. Schneider Bifurcations of standing localized waves on periodic graphs Annales Henri Poincaré vol. 18 no. 4 pp. 1185–1211 2017.

  • 28. S. Dovetta Mass-constrained ground states of the stationary NLSE on periodic metric graphs Non- linear Differential Equations and Applications 2019. to appear.

  • 29. R. Adami S. Dovetta E. Serra and P. Tilli Dimensional crossover with a continuum of critical exponents for NLS on doubly periodic metric graphs Analysis & PDE vol. 12 pp. 1597–1612 02 2019.

  • 30. R. Adami and S. Dovetta One-dimensional versions of three-dimensional system: Ground states for the NLS on the spatial grid Rendiconti di Matematica e delle sue Applicazioni vol. 39 pp. 181–194 2018.

  • 31. R. Adami E. Serra and P. Tilli Threshold phenomena and existence results for NLS ground states on metric graphs Journal of Functional Analysis vol. 271 no. 1 pp. 201 – 223 2016.

Journal information
Impact Factor

CiteScore 2018: 0.95

SCImago Journal Rank (SJR) 2018: 0.324
Source Normalized Impact per Paper (SNIP) 2018: 0.73

Mathematical Citation Quotient (MCQ) 2017: 0.38

Target audience:

researchers in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, and medicine

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 15
PDF Downloads 61 61 4