Antimicrobial resistance of ESBLand AmpC-producing Escherichia coli isolated from meat

Bernard Wasiński 1 , Hanna Różańska 1  and Jacek Osek 1
  • 1 Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, 24-100 Pulawy, Poland


In the present study, 25 Escherichia coli strains isolated from beef, pork, and poultry meat, and producing extendedspectrum β-lactamases (ESBL) (18 strains) or AmpC- cephalosporinases (7 strains) were tested for antimicrobial resistance using the minimum inhibitory concentration method with 16 antimicrobial agents. All examined strains were resistant to ampicillin and the first-generation cephalosporins. Variable resistance to the third-generation cephalosporins (40%-100% among ESBLproducing strains and 0-72% among AmpC-producing strains) was noted. Less than 30% of examined strains were resistant to ciprofloxacin. All isolates were susceptible to the fourth-generation cephalosporins, cephalosporins connected with inhibitors of β-lactamases, carbapenems, and gentamycin

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Aarts H., Guerra B., Malorny B.: Molecular methods for detection of antibiotic resistance. In: Antimicrobial resistance in bacteria of animal origin. Edited by Aarestrup F., ASM Press, Washington, D.C. 2006, pp. 37-48.

  • 2. Arslan S., Eyi A.: Antimicrobial resistance and ESBL prevalence in Escherichia coli from retail meats. J Food Safety 2011, 31, 262-267.

  • 3. Cardinale E., Colbachini P., Perreir-Gros-Claud J.D., Gassama A., Aidara-Kene A.: Dual emergence in food and humans of a novel multiresistant serotype of Salmonella in Senegal: Salmonella enterica subsp. Enterica serotype 35:c:1,2. J Clin Microbiol 2001, 39, 2373-2374.

  • 4. Coque T.M., Baquero T.M., Canton R.: Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance 2008, 13, no. 47.

  • 5. DANMAP 2010. Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from animal foods and humans in Denmark in 2010.

  • 6. Egervärn M., Börjesson S., Byfors S., Finn M., Kaipe C., Englund S., Lindblad M.: Escherichia coli with extendedspectrum β-lactamases or transferable AmpC β-lactamases and Salmonella on meat imported into Sweden. Int J Food Mirobiol 2014, 171, 8-14.

  • 7. European Food Safety Authority (EFSA): Scientific opinion on the public health risks of bacterial strains producing extended- spectrum β-lactamases and/or Amp C β-lactamases in food and food producing animals. EFSA J 2011, 9, 2322.

  • 8. Gundogan N., Avci E.: Prevalence and antibiotic resistance of extended spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella species isolated from foods of animal origin in Turkey. Afr J Microbiol Res 2013, 31, 4059-4064.

  • 9. Jouini A., Ben Slama K., Sáenz Y., Klibi N., Costa D., Vinue L., Zarazaga M., Boudabous A., Torres C.: Detection of multipleantimicrobial resistance and characterization of the implicated genes in Escherichia coli isolates from foods of animal origin in Tunis. J Food Protect 2009, 72, 1082-1088.

  • 10. Markiewicz Z., Kwiatkowski Z.: Bakterie, antybiotyki i lekooporność. Państwowe Wydawnictwo Naukowe, Warszawa 2001, pp. 97-116.

  • 11. Matsumoto Y., Kitazume H, Yamada M, Ishiguro Y, Muto T, Izumiya H., Watanabe H: CTX-M-14 type β-lactamase producing Salmonella enterica serovar Enteritidis isolated from imported chicken meat. Jpn J Infect Dis 2007, 60, 236-238.

  • 12. National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing- Thirteenth Informational Supplement. Supplemental Tables M100-S13, Villanova, PA, USA: NCCLS, 2003.

  • 13. Nikonorow E., Baraniak A., Gniadkowski M.: β-lactamasemediated resistance in Enterobacteriaceae. Post Mikrobiol 2013, 52, 261-271.

  • 14. Pitout J.D.D., Laupland K.B.: Extended spectrum β-lactamase producing Enterobacteriaceae: an emerging public-health problem. Lancet Infect Dis 2008, 8, 159-166.

  • 15. Pitout D.D., Nordmann P., Laupland K.B., Poiler L.: Emargence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemother 2005, 56, 52-59.

  • 16. Sader H., Hsiung A., Fritsche T., Jones R.: Comparative activities of cefepime and piperacillin/tazobactam tested against a global collection of Escherichia coli and Klebsiella spp. with an ESBL phenotype. Diag Microbiol Infect Dis 2007, 57, 341-344.

  • 17. Seung-Hee R., Jip-Ho L., Sang-Honn P., Mi-Ok S., Sun-Hee P., Hyo-Won J., Geon-Yong P., Sung-Min Ch., Moo-Sang K., Young-Zoo Ch., Seong-Gee P., Young-Ki L.: Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods. Int J Food Microbiol 2012, 159, 263-266.

  • 18. Sunde M., Norström M.: The prevalence of associations between and conjugal transfer of antibiotic resistence genes in Escherichia coli isolated from Norwegian meat and meat products. J Antimicrob Chemother 2006, 58, 741-747.

  • 19. Warren R.E., Ensor V.M., O’Neill P., Butler V., Taylor J., Nye K., Harvey M., Livermore D.M., Woodford N., Hawkey P.M.: Imported chicken meat as a potential source of quinolone- resistant Escherichia coli producing extended-spectrum β-lactamases in the UK. J Antimicrob Chemother 2008, 61, 504-508.

  • 20. Wasiński B., Różańska H., Osek J.: Occurrence of extendedspectrum β-lactamase- and AmpC-producing Escherichia coli in meat samples. Bull Vet Inst Pulawy 2013, 57, 513-517.

  • 21. Zhao S., White D.G., McDermott P., Friedman S., English L., Ayers S., Meng J., Maurer J.J., Holland R., Walker R.D.: Identification and expression of caphamycinase blaCMY genes in Escherichia coli and Salmonella isolates from food animals and ground meat. Antimicrob Agents Chemother 2001, 45, 3647-3650.


Journal + Issues